http://humanvarieties.org/2014/06/07/multiple-regression-multiple-fallacies/
Thus, in classical regression models, we are left with a big dark hole. That is, the uncertainty about the indirect effects. Then, if the effect of x1 is not moderated the least by any other independent var., e.g., x2 and/or x3, we can safely make the conclusion that the total effect of x1 is only composed of direct (i.e., independent) effect. If, on the contrary, x1 is moderated by x2 and/or x3, then there are 4 possibilities :
A. x1 causes x2.
B. x2 causes x1.
C. each variable causes the other (but not necessarily to the same extent).
D. x1 and x2 are caused by another, omitted variable.
There is another option, namely that the r (A x B) is due to a chance happening.
The more I learn about stats, the more disappointed I am about most research papers. This is why, in situation like this, I hoped I would stayed a complete ignorant. Too late. My mental health has been seriously endangered now. But there is worse to my mind. My expectation is that even the statisticians are not necessarily aware of this problem. If they were, it is impossible they remain silent. No, they will voice against the misuses of regressions. And we won’t see such fallacies today. And yet…
The only solution is to 'become' a researcher and do things better yourself. "Be the change you wish to see" -Unknown.