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In this brief note, I wish to draw attention to a problem that has been discussed a number 
of times in the literature, but whose implications are still not widely appreciated. As a result, 
many researchers (present author included) keep making distorted inferences about the relative 
size and importance of certain effects, by directly comparing the proportions of variance they 
account for. This can be especially consequential in disciplines where variance components are 
routinely used as indices of effect size, such as behavior genetics. To illustrate, the narrow-sense 
heritability of depression (i.e., the variance in the risk for the disorder explained by additive 
genetic effects) is 30-40%, whereas that of bipolar disorder is at least 60% and perhaps as high as 
80% (Johansson et al., 2019; Knopik et al., 2017). These figures seem to indicate that the 
influence of genetic factors on the risk of developing a condition is approximately twice as large 
in bipolar disorder as in depression. But this interpretation is incorrect; as I discuss below, 
genetic factors play a much more similar role in the two disorders than suggested by this 
comparison. 

 
In general, the proportion of explained variance is a non-intuitive and often misleading 

index of effect size. Variances are mathematically convenient because they combine additively; 
however, they are not expressed in the original units of the variable of interest—say income in 
dollars, intelligence in IQ points, or height in inches—but in squared units. When these variance 
units are not essentially meaningless (as with squared dollars or squared IQ points), they still fail 
to measure the actual trait under consideration (e.g., square inches do not measure a person’s 
height). In contrast, the correlation coefficient—the square root of the explained variance—
quantifies the relation between two variables in terms of the (standardized) original units, and 
thus has a natural interpretation with respect to the size of the effect.1 If the correlation between 
X and Y is .30, a change of one standard deviation in X predicts a change of 0.30 standard 
deviations in Y (and vice versa; here I do not distinguish between statistical prediction and 
genuine causality). The proportion of the variance of Y accounted for by X is just 9%, which 
makes the effect seem small and unimportant. But, as noted above, explained variance is 
expressed in squared units of Y, and relates to the real-world effect of X on Y in a highly 
nonlinear fashion.2 Over the years, many have noted that the proportion of explained variance 
can lead researchers to dramatically underestimate the importance of certain effects, and have 
recommended the use of correlations (or other unsquared indices such as Cohen’s d) to quantify 
and interpret effect sizes (e.g., Abelson, 1985; Beatty, 2002; Breaugh, 2003; D’Andrade & Dart, 
1990; Funder & Ozer, 2019; Hunter & Schmidt, 1990, 2014; Rosenthal & Rubin, 1979). 

 
An important corollary, but one that is seldom discussed explicitly, is that comparing 

effects based on their respective proportions of explained variance tends to exaggerate the 

 
1 In some scenarios, the unsquared correlation between two variables measures the variance explained by a third 
variable of interest (see Johnson, 2011; Ozer, 1985). For example, the correlation between monozygotic twins reared 
apart is a direct estimate of trait heritability (i.e., the proportion of variance explained by additive genetic factors); 
the correlation between two parallel forms of a scale is a direct estimate of their reliability (i.e., the proportion of 
variance explained by the latent construct). In these scenarios, the effect of interest is not the association between the 
two measured variables, but that between each of them and a third, unobserved variable (the genetic factor; the 
latent construct). As usual, the effect of interest is quantified by the square root of the proportion of explained 
variance—in this case, the square root of the heritability or reliability.  
 
2 Throughout the paper, I use “real-world” as a shorthand for effects expressed in the original (standardized) units of 
the relevant variables, as contrasted with the squared units of variance. 
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differences among them—often by a large margin (Hunter & Schmidt, 1990, 2014). Consider a 
variable Z that correlates .60 with Y. A change of one standard deviation in Z predicts a change 
of 0.60 standard deviations in Y. That is, a given change in Z has twice the effect on Y than the 
same amount of change in X. But the variance explained by Z (36%) is four times as large as that 
explained by X—a ratio that grossly exaggerates the real-world difference between the respective 
effects of X and Z on Y, expressed in the original units of the variables.  

 
In general, the ratio between two correlations (henceforth the “effect ratio”) is simply the 

square root of the ratio between the corresponding squared correlations (i.e., the proportions of 
explained variance). Of course, it is not always sensible to compare two standardized effect 
sizes, and—depending on context—unstandardized effects can be more informative than 
standardized ones. But when it makes sense to compare proportions of explained variance in the 
context of continuous variables, the effect ratio provides a much more realistic index of the 
relative importance of the effects, which normally refers to the original units of the variables 
rather than to the squared units of the variance. However, note that the ratio between correlations 
is not the same as the ratio between values of Cohen’s d, because d is nonlinearly related to the 
correlation coefficient. Thus, when the focus of the analysis is the difference between two groups 
(i.e., the proportion of the total variance accounted for by a binary group variable, such as males 
vs. females), the simple effect ratio described here does not correspond to the ratio between d 
values, except in special cases.4 In the rest of this paper, I only consider examples in which the 
relevant variables are continuous and the correlation coefficient is a natural effect size. 
 

Going back to the example of depression and bipolar disorder, the ratio of the 
heritabilities of these disorders is about two; the square root of this ratio is about 1.41, meaning 
that genetic factors contribute about 40% more to the risk of bipolar disorder compared with that 
of depression (instead of twice as much, as suggested by the heritabilities). Indeed, one standard 
deviation increase in the genetic predisposition for bipolar disorder increases risk by √. 60 ≈
0.77 standard deviations, whereas one standard deviation increase in the genetic predisposition 
for depression increases risk by √. 30 ≈ 0.55 standard deviations.  

 
For another example, consider this quote from Plomin and von Stumm (2018): “One of 

the most interesting developmental findings about intelligence is that its heritability as estimated 
in twin studies increases dramatically from infancy (20%) to childhood (40%) to adulthood 
(60%)” (p. 152). Although the heritability increases threefold, the real-world impact of genetic 
factors on intelligence is only about 70% larger in adulthood than in infancy (√3 ≈ 1.73). 
Specifically, one standard deviation increase in the genetic score for intelligence can be expected 
to increase intelligence by √. 20 ≈ 0.45 standard deviations in infancy, √. 40 ≈ 0.63 standard 
deviations in childhood, and √. 60 ≈ 0.77 standard deviations in adulthood. In the same paper, 
the authors predicted that genomewide polygenic scores “will explain substantially more than 
10% of the variance in intelligence, which is more than 20% of the 50% heritability of 
intelligence”, and commented “Nonetheless, 10% is a long way from the heritability estimate of 
50% obtained from twin studies of intelligence” (p. 151). However, a polygenic score that 

 
4 For equal-sized groups, the conversion is 𝑑 =	 !"

#$%"!
. Hence, the ratio between two d values is  &"

&!
=	 ""

"!$
$%"!

!

$%""!
. The 

ratio of d’s closely approximates the ratio of r’s only if the two correlations are both small or very similar to each 
other, so that the “correction factor” on the right becomes approximately 1. 
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explains “only” 10% of the variance can be expected to predict the actual value of the phenotype 
almost half as well as the full genotype (,. 10/.50 ≈ 0.45), assuming that the estimate from 
twin studies is correct. 

 
In quantitative genetics, the routine use of variance components as indices of effect size 

may have led researchers to underestimate the impact of shared environmental factors (i.e., those 
aspects of the environment that tend to increase the similarity between siblings). In their 
comprehensive meta-analysis of 50 years of human twin studies (including cognitive and 
behavioral traits but also morphological, metabolic, reproductive traits, etc.), Polderman et al. 
(2015) estimated the mean heritability across traits at 48.8% and the mean shared environmental 
component at 17.4%. Taken at face value, these figures seem to suggest that additive genetic 
factors are almost three times as influential as the shared environment (explained variance ratio: 
2.80); but in terms of real-world effects on the phenotype, the impact of genes is only 67% larger 
than that of the shared environment (effect ratio: √2.80 ≈ 1.67). Equivalently, one could say 
that the impact of the shared environment is 60% as large as that of genes (the reciprocal of 1.67 
is 0.60). Similarly, the heritable and shared environmental components of criminality and 
substance use have been estimated at about 50% and 20%, respectively (Kendler et al., 2016, 
2019). Translated into real-world effects, this corresponds to a ratio of about ,. 50/.20 ≈
	√2.50 ≈ 1.58 (or its reciprocal 0.63), meaning that shared environmental factors are about 60% 
as influential as genetic factors.5  

 
It is important to note that the discrepancy between the ratio of explained variances and 

the effect ratio becomes more pronounced as the effects being compared grow more different 
from each other. For example, consider a trait that is 50% heritable and has a 5% shared 
environmental component (ten times smaller than the heritability). Many would regard that 5% 
of variance as very small, or even practically negligible; but in fact, the effect ratio is only 

√10 ≈ 3.16 (reciprocal 0.32), meaning that the impact of the shared environment on the 
phenotype is about one third of that of genes (!). Even a shared environmental component of just 
1% is not as tiny as it looks against a heritability of 50%. The effect ratio in this case is √50 ≈
7.07, meaning that genetic factors are seven times more influential than the shared 
environment—a substantial difference, but not nearly as large as indicated by the size of the 
variance components.6 

 
Psychometrics is another discipline in which variance components are routinely 

calculated and directly interpreted by researchers. In classical test theory, the reliability of a scale 
is the proportion of true score variance (i.e., variance shared with the latent construct being 
measured) on the total variance, with the remainder accounted for by measurement error. Thus, 
directly comparing the reliabilities of different scales may give a misleading impression of their 

 
5 Hunter and Schmidt (1990, 2014) illustrated this point with a similar example from behavior genetics: if 
intelligence is 80% heritable and 20% environmental (which may be the case in older adults; see Plomin & Deary, 
2015), the proper ratio between the real-world genetic and environmental effects is two, not four as suggested by the 
size of the variance components.  
 
6 Here I am assuming that the 1% or 5% of shared environmental variance in these examples represents a reliable 
effect, and not a spurious estimate resulting from sampling error or other forms of bias. At least in some cases, it is 
reasonable to treat small variance components as effectively zero; my argument only applies to genuine nonzero 
effects that happen to account for a small proportion of the variance. 
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relations with the latent construct of interest. If two scales have reliabilities of .60 and .80, the 
higher-quality scale correlates with the latent construct only 15% more strongly than the lower-
quality one (effect ratio: ,. 80/.60 ≈ 	√1.33 ≈ 1.15).  

 
This phenomenon can become especially insidious when the variance of psychometric 

scales is parsed at a finer scale of analysis. For example, McCrae (2015, Table 1) reported that 
measured scores on the facets of the Big Five personality domains contain an average of 34% 
common trait variance (i.e., variance shared with the broader domain) and 9% facet-specific 
variance. (To illustrate: in this model of personality, the broad domain of Extraversion has six 
narrower facets: Warmth, Gregariousness, Assertiveness, Activity, Excitement seeking, and 
Positive emotions.) These figures seem to suggest that a person’s true score on a given 
personality domain (e.g., Extraversion) contributes to their measured score on a facet of that 
domain (e.g., Assertiveness) almost four times as much as their true score on the facet itself. 
However, the effect ratio is markedly smaller: ,. 34/.09 ≈ 	√3.78 ≈ 1.94, meaning that 
personality domains contribute to scores about twice as much as facets (instead of almost four 
times as much). 

 
Later in the same paper, McCrae (2015) estimated variance components for scores on 

single personality items. On average, the total score variance consisted of 12% common trait 
variance; 24% item-specific variance; 13% method variance (regarded as systematic error); and 
51% random error. McCrae concluded: “The observed values are sobering: In the typical item, 
nearly two thirds of the variance is either random or systematic error […], which is why single 
items are notoriously unreliable; of the remaining true-score variance […], only a third is due to 
the common trait” (p. 106). However, effect ratios paint a less sobering picture: measurement 
error contributes only 33% more than true score variation (,(.51 + .13)/(.24 + .12) ≈
	√1.78 ≈ 1.33), and the contribution of common trait variation to item scores is about 70% as 
large as that of item-specific variation (,. 12/.24 = 	√0.50 ≈ 0.71).  
 

The use of variance components as measures of effect size is especially widespread in 
behavior genetics and psychometrics, but by no means limited to these disciplines. An entire line 
of methodological research—under the rubric of “relative importance analysis” or “relative 
weight analysis”—seeks to supplement standard multiple regression coefficients with indices 
that quantify the amount of variance explained by each predictor in the model, in order to rank 
and compare predictors in terms of their importance (see Johnson & LeBreton, 2004; Tonidandel 
& LeBreton, 2011, 2015). Relative importance analysis is popular in various areas of the applied 
social sciences, including organizational, vocational, and business psychology. The rationale for 
relying on variance components is that, unlike regression coefficients, they are additive and sum 
to the total R2 of the model. But while additivity is a convenient property, variance-based indices 
can dramatically magnify the apparent differences in importance among predictors, even when 
their real-world effects on the outcome are not very dissimilar.7 In principal component analysis 
(PCA) and exploratory factor analysis (EFA), components and factors are routinely ranked based 

 
7 A similar criticism applies to the summary indices I have proposed to quantify the heterogeneity in the 
contributions of individual variables to Mahalanobis’ D, which is the multivariate generalization of Cohen’s d (Del 
Giudice, 2017, 2018). Those indices rely on a decomposition of the total squared effect size into a weighted sum of 
squared univariate effect sizes, and arguably provide an inflated sense of heterogeneity across variables. 
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on the proportion of variance they explain in the original variables; this may easily inflate the 
perceived differences between “strong” and “weak” dimensions of variation in the data. 

 
In sum: using the proportion of explained variance as an index of effect size does not just 

distort the real-world magnitude of individual effects, but also exaggerates the differences 
between effects, which may lead to strikingly incorrect judgements of relative importance. 
Luckily, a meaningful and interpretable “effect ratio” can be easily calculated as the square root 
of the ratio between proportions of explained variance. In a number of practical examples, effect 
ratios tell a different story than variance components, and might prompt one to rethink the 
interpretation of certain canonical results (e.g., regarding the role of the shared environment in 
the development of psychological traits). This simple but consequential point should be 
understood more widely; with no pretense of originality, I hope that this note will contribute to 
raise awareness and prevent fallacious interpretations of research findings. 
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