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Abstract 
Tests of selection based on population differentiation were performed on two highly            

polygenic traits important for success and satisfaction in life: height and educational            

attainment (EA). 

Polygenic scores (PGS) of EA and height, computed across three public genomic databases             

revealed differences between populations (1000 Genomes, HGDP, gnomAD) that matched          

the average IQ and height of ethnic groups (r ~0.9). 

A moderately strong correlation between latitude and EA PGS (r= 0.68), significantly            

deviating from the correlations of random SNPs, suggests the implication of climate            

(seasonality or winter temperature) for selection on cognitive abilities. 

The global Fst index revealed population differentiation at height and EA loci, significantly             

deviating from random SNPs. 

Substantial LD decay between Africans and Europeans was found (r= 0.6) but there was no               

correlation between Linkage disequilibrium (LD) decay and population differences in          

polygenic scores (r= 0.015, p= 0.45) for EA, and slight inflation of height PGS difference due                

to LD decay (r= -0.04, p= 0.0315). 

implying that LD decay does not produce a bias in polygenic scores of non-European               

populations. Finally, it is shown that PGS differences are more sensitive to SNP significance              

than Fst, reflecting the major limitations of Fst as an index of selection. 

 

1. Introduction 
 

Many studies over the last decade have established the highly polygenic nature of             

many human traits (Lo et al., 2015; Shi et al., 2016; Boyle et al., 2017). This discovery was                  

aided by technical advances in the science and technology of genomics, which enabled             

genome-wide association studies (GWAS) on large samples to detect thousands of variants            

with tiny effect on human traits. This genetic architecture contrasts with the classical             

Mendelian model where effects are driven by rare variants with large effect. 

Despite these advances, polygenic adaptation has proven difficult to disentangle          

because causal variants only undergo subtle changes in allele frequency. Moreover, the            

arrays used by GWAS usually tag causal variants, that is they identify variants that are only                
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in linkage disequilibrium with the causal variant. Whilst the effect of causal variants is              

generally homogeneous across ethnic groups (Ishigaki et al., 2020), tag variants have            

decreased predictive power in populations that are ancestrally different from the GWAS            

reference sample, due to a phenomenon known as LD-decay. The latter is due to              

recombination events which shuffle the genetic material (Vos et al., 2017). Another issue             

that affects GWAS and selection methods relying on GWAS summary statistics is population             

stratification, which can inflate signals of selection due to co-variance between genes and             

the environment.  

Methods to detect directional selection usually exploit population differentiation in          

allele frequencies (Piffer, 2013; Berg & Coop, 2014). Other methods are based on             

within-population variation: selection scans based on singleton density score (SDS) (Field et            

al., 2016) or tests that analyze the correlation between derived allele frequencies (DAF) and              

GWAS effect size and direction (Uricchio et al., 2019). 

Other tests rely on the correlation between allele frequencies and environmental variables,            

such as annual temperature or rainfall, or proxies for climate such as latitude (Limborska et               

al., 2002; Eisenberg, Kuzawa and Hayes, 2010). 

This paper will use tests relying on between-population variation and correlation with            

latitude to identify signals of polygenic adaptation on two highly polygenic traits: Educational             

attainment and height. Population differentiation at education-related genetic variants has          

been shown by previous studies (Piffer, 2013; Piffer, 2015, Piffer, 2019). Recently a study              

found strong directional selection on educational attainment in Britain over the last 2k years              

(Stern et al., 2021). 

The correlation between polygenic scores and average population trait and Qst-Fst           

(Whitlock & Guillaume, 2009) test are complementary approaches to detect polygenic           

selection. 

These two traits were chosen because they are 1) socially relevant since they both affect               

success in life (academic, occupational and mating success); 2) highly polygenic and 3)             

GWAS relying on very large sample sizes are available. Moreover, education is highly             

genetically correlated to intelligence, and can be used as a proxy for cognitive abilities. 

Finally, two novel measures of selection are introduced: 1) the correlation of GWAS             

allele frequencies across pairs of populations and 2) the ratio between allele frequency             

difference and mean absolute allele frequency difference. 

 

 

 

2. Methods 
 



Polygenic scores were computed using GWAS SNPs meeting the standard          

significance threshold (p< 5 x 10​-8​) and weighed by effect size. 

The inclusion criteria for GWAS were sample size and predictive power: the GWAS with the               

largest sample size and predictive power were used to compute polygenic scores: for             

education, Lee et al. (2018) study, which included 1.1 million participants and had the              

highest predictive power (~9%) and largest sample size among GWAS of education and             

cognition. The EA MTAG polygenic score was chosen because it encompassed several            

cognitive abilities and had the largest predictive power; for height, the GWAS meta-analysis             

comprising 700,000 individuals by Yengo et al. (2018) had the largest sample size, but the               

highest predictive power (42.8%) was achieved by Chung et al. (2019), albeit with a              

somewhat smaller sample size (N= 456,837). 

Polygenic scores were computed using the three largest publicly available population           

genetics datasets: 1000 Genomes, gnomAD and HGDP.  

Average height for populations was obtained from Wikipedia        

(​https://en.wikipedia.org/wiki/Average_human_height_by_country​) and was available for 12      

populations in 1000 Genomes. The HGDP sample included mostly tribes that were not             

represented in national height statistics c for which it would be difficult to get a precise                

estimate, hence they were reported without attempting to compute the correlation with            

phenotypic height. The average height for gnomAD was obtained from National Health            

Statistics (Fryar et al., 2018) for ethnic groups in the US represented by the gnomAD               

samples (Hispanic, East Asian, European (non Finnish), African-American). The average          

height for Finns was obtained from Wikipedia. The average height of Ashkenazi Jews was              

obtained from a recent study on the genetics of height among a sample consisting mostly of                

Ashkenazi Jews (Zeevi et al., 2019). 

The random SNPs were matched by MAF and LD (with a threshold r​2​=0.1) using SNPSNAP. 

The absolute allele frequency difference was calculated as the mean absolute difference of             

the allele frequencies 

Fst and allele frequencies were calculated using Plink 1.9 and polygenic scores for each              

population were computed using R (version 3.6). Code and data are available on OSF:              

https://osf.io/6dvfc/ 

 
3. Results 

Height PGS  

The polygenic scores for height were calculated using Chung et al. (2019)’s GWAS, using              

the effect size in the Lasso+CTPR meta-analysis, which provided the best predictive power.             

The PGS showed substantial inter-population variation. The highest values were obtained by            
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northern Europeans (Finns, Orcadians, Northern Europeans from Utah) and the lowest by            

Native Americans (Karitiana, Surui) and Southeast Asians (Dai, Vietnam).  

There was a weak, positive correlation (r= 0.321) between height PGS and latitude (figure              

1).  

 

Figure 1. Scatterplot (Height PGS x Latitude): HGDP populations. 

 

 

 

The height PGS in the 1000 Genomes (figure 2) showed higher scores for Europeans and               

Africans, and lower for Latin Americans and East Asians. 

Figure 2. Height PGS: 1000 Genomes 

 



 
 

The PGS had a strong correlation with average population height (r= 0.923) (figure 3). 

 
Figure 3. Scatterplot (Height PGS x average height). 
 

 



 
In the gnomAD dataset, the correlation between height and PGS was r=0.949 (figure 4). 

 

Figure 4. Scatterplot (Height x PGS): gnomAD. 
 

 
 
 
 
Education 

 

There was a strong, positive correlation (r= 0.675) between EDU PGS and latitude (figure 5).  

HGDP 

Figure 5. Scatterplot (EDU PGS x Latitude): HGDP populations. 



 

 
 
Monte Carlo simulation 

 

1000 random polygenic scores were generated to compute the null distribution of correlation             

coefficients. The correlation between the clumped EDU PGS and latitude (significantly           

deviated from the null (Z= 3.29, p= 0.0009). 

 

Figure 6. Density plot (correlation with latitude). 
 



 
 

 

 

1000 Genomes 

 
Among the 1000 Genomes populations, the correlation between EDU PGS and average IQ             

was r= 0.903 (figure 6). 

 

Figure 6. Scatterplot (EDU PGS x IQ): 1000 Genomes. 
 



 

 

gnomAD 

 
The correlation between IQ and edu PGS was r= 0.985.  

 
Figure 7. Scatterplot (EDU PGS x IQ): gnomAD. 
 



 
 
Correlation between height and education (PGS and average height) 

 

The population-level correlation between EDU and height PGS was close to 0 (r= 0.02,              

-0.304, 0.03 in gnomAD, 1000 Genomes and HGDP, respectively). 

 

Global Fst 
A version of the Qst-Fst test, known as Fst enrichment test (Guo et al., 2018) was used to                  

detect divergent selection. A more powerful version is used here, which avoids the issue of               

multiple comparisons found in pairwise tests: global Qst-Fst. The trait-associated SNPs were            

matched (after LD clumping) to random SNPs stratified by MAF and not in close LD (r< 0.1).                 

This process was repeated 1000 times to generate a distribution of mean Fst under              

neutrality. 

The GWAS by Yengo et al. (2018) was used to compute Fst values for height-associated               

SNPs because the Chung et al. (2019) GWAS summary statistics lacked the p value needed               

to perform LD clumping.  

In 1KG, the height PGS had higher average Fst than random SNPs,significantly deviating             

from Fst values of random PGS (figure 8). 

Figure 8. Global Fst for height SNPs and random SNPs. 1000 Genomes 



 

A similar deviation from random SNPs was observed in the HGDP dataset (figure 9). 

Figure 9. Global Fst for height SNPs and random SNPs. HGDP 

 

 



The global Fst enrichment test yielded positive results for education too (figures 10 and 11). 

Figure 10. Global Fst for EDU SNPs and random SNPs. 1000 Genomes 

 

Figure 11. Global Fst for EDU SNPs and random SNPs. HGDP 

 



 

 

The Fst values for random and GWAS SNPs and the Z scores + empirical p values are                 

reported in table 1. 

 

Table 1. Fst, Z score and p values for height Fst enrichment test. 

 

 

Controlling for LD decay 

The SNPs that reached genome-wide significance (P 5 × 10−8) in the largest GWAS of               

educational attainment (Lee et al., 2018) were selected. Those with minor allele frequency             

(MAF) <0.01 in the 1000 Genomes database among Europeans (CEU) and Africans (YRI)             

were removed. There were 2,596 SNPs satisfying these criteria. To explore the different LD              

patterns across populations, the SNPs were uploaded to LDlink, and all variants -/+ 500 Kb               

of the query variant with a pairwise R2 value greater than 0.01 were downloaded using CEU                

and YRI as reference populations. There were 4,696,863 and 5,739,447 variants for CEU             

and YRI, respectively. 

The two files were merged and 1,680,781 overlapping SNPs were retained.  

For each query variant, the correlation between the pairwise R2 values for CEU and YRI               

was computed. The correlation coefficient was used as an index of differential LD decay              

across Europeans and Africans relative to the query variant. That is, the higher the              

correlation between the CEU and YRI R2 values, the lower the amount of trans-ethnic LD               

decay.  

 Fst GWAS Fst random Z p 

Height 1KG 0.086 0.076 9.04 0.001 

Height HGDP 0.089 0.084 3.679 0.0009 

EDU 1KG 0.080 0.076 3.11 0.002 

EDU HGDP 0.093 0.085 7.945 0.0009 



For  each SNP, the PGS for CEU and YRI was computed, as well as the pairwise Fst.  

The average correlation coefficient between the CEU and YRI R2 values across the 2596              

SNPs was r=0.608. This shows the presence of a moderate amount of LD decay. 

There was a significant PGS difference between CEU and YRI. Welch Two Sample t-test:              

means: 50.312% - 47.995% respectively, t= 3.134, 95% C.I 0.008 - 0.037, p= 0.001. 

There was no correlation between LD decay and the CEU-YRI PGS difference (r= 0.015, p=               

0.451). 

 

Figure 12. Association between LD decay and European-African difference in EA           
polygenic score. 

 

 

The same analysis was performed on the height significant SNPs. After filtering for MAF              

(>0.01) there were 2762 SNPs, and 1,693,394 variants in LD within the 500 Kb window. 

The average correlation between the pairwise R2 values of CEU and YRI was r= 0.63. The                

polygenic score difference was 0.67 % (50.02 % vs 49.33%). There was a significantly              



negative correlation between (lack of) LD decay and PGS difference (r= -0.0409, p= 0.0315).              

This can be seen from the scatterplot in figure 13. 

Figure 13. Association between LD decay and European-African difference in Height           
polygenic score. 

 

 

After selecting the SNPs with low amount of LD decay (r>0.8), the PGS difference was               

reduced to 0.53%. 

 

Correlation between allele LD decay, Fst and allele frequency differences 

Fst is a measure of allele frequency differences. However, unlike polygenic scores, it is              

non-directional, that is, it is “agnostic” about the allele’s direction of effect. Hence, Fst suffers               

from loss of information compared to polygenic scores. Indeed, it was almost perfectly             

correlated (r= 0.97) to the absolute allele frequency difference (AFD, absolute value of the              

difference between population frequencies ) (Figure 14), but had zero correlation with the             

polygenic score difference. Fst and AFD were also negatively correlated to (lack of) LD              

decay, that is SNPs with higher LD decay had higher Fst values. 



 

Figure 14. Correlation matrix  

 

The results were almost identical when using LD decay across Europeans and East Asians              

(CEU - CHB). However, the extent of LD decay between Europeans and Chinese was lower               

than between Europeans and Africans (r= 0.727 and 0.608, respectively; t= 22.043, p <              

2.2e-16). 

 

PGS difference/Fst as signal of selection 

If the polygenic score difference between populations is more sensitive to selection than Fst              

or AFD, the average ratio of PGS difference to Fst across SNPs should be higher for GWAS                 

SNPs under selection than for less selected traits. Since Fst is nearly equivalent to the               

absolute allele frequency difference, it is a mixture of allele frequency shifts due to drift and                

to directional selection but it is not possible to disentangle them. Conversely, the PGS              

difference is more representative of selection pressure. Hence, the AFD/PGS difference ratio            

could be a useful indicator of selection pressure on a trait. 

Table 2. GWAS significant SNPs (EA) 



 

 

Simulation with quasi-random GWAS SNPs 

The EA GWAS SNPs with p value >0.95 (N= 2331) and MAF> 0.01 were used to compute                 

the PGS delta, the AFD and the correlation with LD Decay. A prediction of the polygenic                

selection model is that the PGS delta and the PGS delta/absolute delta will be lower than in                 

the GWAS significant SNPs. 

The polygenic scores were close to the theoretically expected value of 50% (CEU= 0.4965              

and YRI= 0.4997) and the difference was 0.3% (table 3). The AFD was almost 2 times lower                 

than in the GWAS significant SNPs, and the raw PGS delta/AFD ratio was ~4.5 x smaller                

(0.0259). The lower AFD (Fst) difference is due to the MAF being lower in the less GWAS                 

significant SNPs (0.184 vs 0.311). Indeed, Fst is mathematically dependent on MAF, and             

has lower values with lower MAF (Jakobsson, Edge and Rosenberg, 2013). 

Table 3. Quasi-random GWAS SNPs 

 

 Raw PGS  
delta  

AFD Raw PGS delta/AFD  

CEU-CHB (EA) 
-0.0126 

 

 0.1759 0.0715 

CEU-YRI (EA) 
0.0231 0.2026 0.1143 

CEU - CHB (Height) 
0.0148 0.1789 0.082 

CEU-YRI (Height) 
0.0067 0.2 0.0335 

 Raw PGS  
delta  

AFD Raw PGS delta/AFD  

CEU-YRI 
-0.0032 0.1225 0.0259 



Difference in correlation coefficient between GWAS significant and quasi-random SNPs 

Another metric to represent similarity in allele frequencies between a population pair is the              

correlation coefficient. Unlike the Fst, the correlation coefficient is “sensitive to the sign” of              

the difference between each pair of observations. In other worse, it represents not only the               

strength of the relationship between two variables (or lack thereof) such as Fst or the               

absolute allele frequency difference; in fact, it is also an expression of the direction of such a                 

relationship because it can acquire positive and negative values. 

Therefore, directional (divergent) selection on a population pair should depress the           

correlation coefficient between the (same) alleles in the two populations. A prediction of this              

model is that the correlation between the allele frequencies of a pair of populations will be                

lower for GWAS significant SNPs than for less significant (or random) SNPs. 

Indeed, the correlation between the YRI and CEU EA GWAS significant SNPs was r= 0.592,               

and r= 0.894 for the quasi-random SNPs. 

The partial correlation of the population frequencies controlling for LD decay was nearly             

identical, indicating that LD decay does not mediate the correlation. 

The height significant SNPs had similar correlation between CEU and YRI (r= 0.612) and              

CEU-CHS (r= 0.673). 

Random SNPs 

1000 sets of random SNPs, matched for LD score and MAF, were generated using              

SNPSNAP. To simulate a GWAS, the status of effect allele was assigned at random for each                

SNP. The average correlation between the CEU and YRI allele frequencies over 1000 sets              

was 0.814. 

Individual PGS 

Polygenic scores were computed for each individual in 1000 Genomes for Europeans and             

Africans. The individual polygenic scores differed by 1.7 SDs across the two groups (t =               

-20.902, df = 152.74, p-value < 2.2e-16). The PGS were calculated for all the populations in                

the European and African 1000 Genomes groups. Most of the variation was between             

continents, with little overlap, but considerable overlap among populations from the same            

continental group (fig. 15). 

Figure 15.  



 

 

Discussion 
 
Height and education-associated SNPs were both highly differentiated across populations,          

as shown by the global Fst enrichment test and polygenic scores. These differences             

matched differences in average trait (i.e. height and education), reaching correlations ~ 0.9             

with average population IQ and height (figures 3, 4, 6, 7), implying that selection pressure               

after the out of Africa dispersal acted with different strength on different populations. The              

results were robust across different datasets (gnomAD, 1000 Genomes and HGDP), yielding            

more credibility to the findings. The lack of a correlation between LD decay and population               

differences in polygenic scores (figure 12) suggests that low p value EA GWAS SNPs have               

a causal effect on the phenotype or they are closely tagging causal variants (i.e. high LD).                

For height, LD decay had a small effect on the PGS difference, so that the PGS difference                 

computed using SNPs in low LD decay (r> 0.8) was slightly reduced (from 0.67% to 0.53%). 

Climate is a potential mechanism that influenced polygenic adaptation for education, via            

selection for enhanced cognitive ability or life-history traits. Indeed, a positive correlation (r=             

0.68) between education PGS and latitude was found (figure 5). A simulation using random              

SNPs matched for minor allele frequency, showed that this result rarely occurs by chance              

(p= 0.0009) (fig.6). Remarkably, the height PGS had a much weaker correlation (r= 0.3) with               



latitude (figure 1), despite Bergmann’s rule predicting cold-climate selection for larger sized            

animals. However, this mirrors findings of a weak positive relationship between height and             

latitude in human populations (Gustafsson & Lindenfors, 2009). 

Recently, Stern et al. (2021) found evidence for directional selection on EDU PGS. The              

effect was partly mediated by EDU’s correlation to a variable measuring skin pigmentation             

(“sunburning ability”). The authors found that after accounting for selection pressure on skin             

pigmentation, the selection signal on EDU was attenuated. Hence, a large share of the              

selection pressure on EDU was due to correlated response with another trait. In light of the                

strong correlation with latitude,an alternative explanation to directional selection on EDU           

being a by-product of selection on pigmentation, is that climatic factors could account for the               

genetic correlation between EDU and skin pigmentation. 

The present study also shows the empirical equivalence of Fst and absolute allele frequency              

difference (r= 0.97). An advantage of using polygenic scores compared to the Fst or              

absolute allele frequency difference is that it is directional, that is each allele’s effect              

(whether it is a risk allele or not, or whether it increases or decreases a phenotype) is taken                  

into account. To the contrary, Fst and AFD are non-directional, so the mean Fst or AFD                

across many genetic variants is independent of alleles with positive effects being            

overrepresented in a population compared to another one. Hence, Fst or AFD are more              

representative of drift than selection. Conversely, the polygenic score difference is more            

indicative of directional selection because it is dependent on the average direction of             

selection across many genetic variants. Hence, the ratio between the latter and the mean              

Fst or AFD is a measure of directional selection net of the effects of drift. Accordingly, there                 

was a much stronger reduction in PGS difference than Fst in a set of low significance                

(p>0.95) GWAS SNPs, which putatively contain mostly noise (and very little selection            

signal). They had lower (2x) Fst, but much lower (7x) PGS difference, resulting in a 4.5-fold                

reduction in PGS difference/AFD ratio (tables 2,3). 

Another way to represent the coefficient of directional selection is to compute the correlation              

between the frequencies of (GWAS significant) alleles with positive effect among a pair of              

populations; one can compare them to non-significant (almost random) SNPs, or a set of              

random SNPs matched for MAF. The advantage of using correlation of allele frequency             

across population pairs is that it is intuitive and, unlike Fst, it is sensitive to the direction of                  

selection on each genetic variant as well as its strength. Divergent selection will make allele               

frequencies shift in different directions among populations. Indeed, the GWAS significant           

SNPs for height and EA had much weaker correlation of allele frequencies (r~ 0.6)              

compared to non-significant and random SNPs (r>0.8). 

Allele frequencies computed by group are traditionally used for tests of selection. This allows              

researchers to identify the genetic variants that have the strongest selection signals.            



However, another way to represent allele frequency differences between groups is with            

individual PGS: this gives a better idea of how much variation is partitioned between              

individuals and between groups. An in-depth analysis of this topic is not within the scope of                

this paper, but it can be seen (figure 15) that for polygenic scores of traits under strong                 

polygenic selection, there is much more dispersion between continental groups than           

between individuals. That is, there is little overlap in the individual polygenic scores across              

continental groups (Africans and Europeans), as they deviate by more than 1.5 SDs. On the               

other hand, populations within the same continent have relatively tiny differences. 
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