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Abstract

The weak form of Spearman’s Hypothesis, which states that the racial group differences are
primarily due to differences in the general factor (g), was tested and confirmed in this
analysis of the Project Talent data, based on 34 aptitude tests among 9th-12th grade
students. Multi-Group Confirmatory Factor Analysis (MGCFA) detected small-modest bias
with respect to race but strong bias with respect to within-race sex cognitive difference. After
establishing partial measurement equivalence, SH was tested by comparing the model fit of
correlated factors (non-g) model with a bifactor (g) model as well as the relative contribution
of g factor means to that of the specific factors. While g was the main source of the
Black-White differences, this wasn’t the case for within-race sex differences. The evidence of
measurement bias in the sex analysis may cause ambiguity in interpreting SH for sex
differences. Results from MGCFA were somewhat corroborated by the Method of Correlated
Vectors, with high correlations of subtests’ loadings with Black-White differences but
near-zero correlations with sex differences. This finding replicates earlier MGCFA studies
supporting SH with respect to the Black-White cognitive gap as well as earlier MGCFA
studies revealing stronger gender bias than racial bias.

Keywords: Project Talent, Black-White IQ gap, Sex IQ gap, measurement invariance,
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1. Introduction

Large differences in cognitive abilities between U.S. race/ethnic groups, e.g., Blacks, Whites,
and Hispanics, are beyond dispute (Murray, 2021). Jensen (1998) proposed that the
magnitude of the racial differences in IQ, at least between Black and White Americans, as
well as differences in cognitive-related socio-economic outcomes are a function of the
g-loadings (i.e., the correlation between the tests or outcomes and the general factor of
intelligence) of the respective cognitive tests and outcomes, making the g factor an essential
element in the study of socio-economic inequalities. More specifically, Jensen (1998)
proposed that race/ethnic group differences on cognitive tests are largely due to latent
differences in general mental ability. This is known as Spearman’s hypothesis (SH) which
exists in two forms: the strong and the weak form, the latter of which was endorsed by
Jensen. The strong form affirms that the differences are solely due to g factor differences
while the weak form affirms that the differences are mainly due to differences in g. The
alternative contra hypothesis states that group differences reside entirely or mainly in the
tests’ group or broad factors and/or test specificity and that g differences contribute little or
nothing to the overall ones.



Unfortunately, Spearman’s Hypothesis is not always well understood. Several researchers
(e.g., Van der Sluis et al., 2006, 2008) misconstrued SH by interpreting a small g difference
between groups as a rejection of SH. As Jensen (1998) mentioned, all tests measure g to
some extent, some better than others. If the group differences in observed total IQ scores are
small, as in the case of gender groups, one should not expect large g differences. The test of
Spearman’s g is about finding the proportion in the patterns of subtest score differences that
is due to the general factor relative to non-g (e.g., specific) factors. Tests which better
measure g would exhibit greater group differences. This is for answering this question that
Jensen (1998) devised the Method of Correlated Vectors (MCV) to find out how much g
explains the variation in subtest differences between groups.

Prior to testing for SH, test score comparability must be established in order to produce
unbiased estimates of means in specific and general factors, thus avoiding ambiguity in
interpreting SH. This is best achieved through latent variable techniques at the item-level,
such as Item Response Theory (IRT), and at the subtest-level, such as Multi-Group
Confirmatory Factor Analysis (MGCFA).

The traditional view of culture bias holds that members of two groups, after being perfectly
matched for latent ability, do not have equal probability of correct response on any given
item. To achieve test comparability in MGCFA, members of different groups should use the
same latent abilities (e.g., verbal, perceptual) to solve any given subtest, members of
different groups should have equivalent subtest loadings (i.e., weights) on the latent factors,
members of different groups matched in latent factor mean should get the same score on the
subtests loading onto this latent factor. If the latent factor scores do not account fully for the
group difference in the subtest scores, the remainder is due to external influence, commonly
assumed to be culture bias. Non-invariance typically comes from unwanted nuisance factors
beyond the factor(s) that are the intended target of the measures. Millsap & Olivera-Aguilar
(2012, p. 388) provides an illustration: the inclusion of a math test having a mixture of
multiple-choice items and problem-solving items, with the latter being story problems, may
introduce bias against foreign language speakers due to the verbal content of this test. If the
math factor is not supposed to measure verbal skill, then such a test should be discarded.

Numerous studies have been conducted using MGCFA, mostly from US samples. There was
a strong agreement that cognitive tests are cross-culturally valid between Whites and Blacks
with minimal or no bias (Beaujean & McGlaughlin, 2014; Dolan, 2000; Dolan & Hamaker,
2001; Frisby & Beaujean, 2015; Hajovsky & Chesnut, 2022;1 Hu et al., 2019; Kane &
Oakland, 2010;2 Keith et al., 1995; Lasker et al., 2019, 2021; Lubke et al., 2003; Scheiber,
2015, 2016a; Sipe, 2005; Trundt et al., 2018). There were two notable exceptions. One
comes from Scheiber (2016b) who found strong measurement bias in the analysis of the
WISC-V between 777 White males and 830 White females, 188 Black males and Black 221
females, and 308 Hispanic males and Hispanic 313 females. MGCFA was applied to all of
these six groups simultaneously. Muthén & Asparouhov (2014) showed that MGCFA is not
practical for testing many groups (>2). Another comes from Benson et al. (2020) who
analyzed the UNIT2 norming sample and found that scalar invariance was rejected not only

2 Their analysis of the WJ-III test reported fit index values with only 2 decimals but the ∆GFI and ∆TLI
of 0.01 are already a sign of test bias. The impact of the bias is unknown but is unlikely to be large.

1 Their analysis of the WJ-IV is faulty because parent education was controlled for. This has the
consequence of attenuating any possible measurement bias.



for race (Whites, Blacks, Asians) and ethnicity (Hispanic) groups but also for gender groups.
Metric invariance was also rejected for age and gender groups, suggesting that the UNIT2
overall is somewhat biased with respect to any group.3

So far the evidence of strong measurement bias in race differences comes mainly from
studies conducted in African countries. Dolan et al. (2004) compared the Junior Aptitude Test
(JAT) scores of South African Black and White students and found that both metric and
scalar invariance are violated.4 Lasker (2021) re-analyzed Cockroft et al. (2015) and
compared the WAIS-III scores of undergraduate South African students enrolled at an
English medium University to undergraduate UK university students, and found that metric
and scalar invariance are rejected. Warne (2023) compared the WISC-III scores of Kenyan
Grade 8 students in Nairobi schools to the American norm and the WAIS-IV scores of
Ghanaian students who showed English fluency at high school or university to the American
norm. While measurement equivalence was established for Ghanaian students, it was
rejected for Kenyan students.5

Unlike race/ethnic differences being the focus of criticisms with respect to cross-cultural
comparability, sex differences in cognitive abilities are usually not the focus of these attacks.
Yet research employing MGCFA showed mixed evidence of gender fairness. Some studies
reported small or no measurement bias (Chen et al., 2015;6 Dombrowski et al., 2021; Irwing,
2012; Keith et al., 2011; Palejwala & Fine, 2015;7 Reynolds et al., 2008; van der Sluis et al.,
2006) while others reported non-trivial bias, intercepts almost always being the common
source of bias (Arribas-Aguila et al., 2019; Dolan et al., 2006; Lemos et al., 2013; Pauls et
al., 2020; Pezzuti et al., 2020; Saggino et al., 2014; Van der Sluis et al., 2008; Walter et al.,
2021). Although not ideal, the percentage of subtest bias is usually not so severe to the point
that comparability is impossible. The conclusion that cognitive tests are gender biased
should also be tempered by the difficulty to achieve full measurement equivalence in survey
scales using traditional MGCFA (Van De Schoot et al., 2015) and by the exhaustive list of
studies examining measurement bias at the item-level, rather than subtest-level, showing
only minimal bias against either race or gender groups (Hu, 2023). The lesson to be drawn is
that a comprehensive study of test bias should employ both item-level analysis such as IRT
and test-level analysis such as MGCFA.

While measurement equivalence with respect to racial groups is well established in Western
countries, only a few studies have tested the Spearman’s Hypothesis (SH). So far, there
have been two methods proposed for testing SH within MGCFA. Dolan (2000) proposed that
the most parsimonious g model must fit better than the non-g model. Dolan et al. (2006) and,
later, Frisby & Beaujean (2015) proposed that the group differences in g factor means cannot

7 They only use CFI and reported this value with 2 decimals instead of 3.

6 Despite their conclusion, scalar invariance is rejected on the basis of the large ∆RMSEA (.014). The
abnormal change in χ2 is another red flag. CFI was reported with 2 decimals instead of 3, making it
impossible to precisely evaluate ∆CFI. How many subtests’ means have to be freed is unknown.

5 Although Warne concluded that the Kenyan sample showed measurement equivalence, the ΔCFI
was extremely high (.012) for scalar invariance.

4 A limitation of their study is that MGCFA was applied to three groups simultaneously instead of two.

3 Their analysis however is faulty on multiple grounds. The analysis of age groups and gender groups
was not disaggregated by race or ethnicity groups. Similarly, the analysis of ethnic groups (Hispanic
vs. non-Hispanic) is confounded by race identity. The analysis of race groups was done using three
groups instead of two.



be fixed to zero in a g model without a serious worsening in model fit. Model comparison
between a correlated-factors (non-g model) and a higher-order factor (g model) has been
evaluated by Dolan (2000) and Dolan & Hamaker (2001) but these models fit almost equally
well, although admittedly the bifactor model has not been tested and the contribution of g to
the subtest difference is large. The constraint on g factor mean differences has been tested
by Kane & Oakland (2010), Frisby & Beaujean (2015), Hu et al. (2019), Lasker et al. (2019;8

2021) mostly on a bifactor model and the results have been supportive of the Spearman’s
Hypothesis. A decomposition of the percentage of each subtest’s difference due to g
provides a clearer picture of the relevance of g versus specific factors. This strategy has not
been commonly used, with the exception of Dolan (2000, Table 8). It requires multiplying the
factor mean difference by the subtest’s loadings. These numbers are often reported in the
study of Black-White differences but not in the study of sex differences.

For this reason, the test of SH with respect to sex differences is much less conclusive. But
this is also partly due to faulty methodologies. For instance, Van der Sluis et al. (2006, 2008)
analyzed two twin samples from the Netherlands and another twin sample from Belgium. Not
only they did not use adequate cutoffs for fit indices and merely report CFI and RMSEA
(which is found in later studies to be very insensitive to misfit) with 2 decimals instead of 3,
but they also entirely relied on tests of significance for testing the group difference in latent
means. In the 2006 study of Dutch adult twins, it was found that one specific factor had a sex
gap close enough to zero, while constraining the second-order g difference in means to zero
will cause a misfit. This specification of g + a subset of first-order factors as best fitting model
represents an alternative version of the weak SH model (Dolan, 2000) yet the authors
concluded that SH was rejected and they did not even report the magnitude of the g
difference or its contribution relative to specific factors. In the 2008 study of 12-13 years
Dutch old twins and 9-13 years old Belgian twins, both data sets lacked power to reject either
the strong SH (fixing all specific factor means to zero) or contra-SH model (fixing only the g
factor means to zero), yet the Dutch and Belgian data yield g gaps of 3.83 and 1.58 IQ
points, respectively, despite the specific factor means and loadings not being reported. Dolan
et al. (2006) analyzed the WAIS-III in a subsample of the Spanish standardization data. After
fitting a parsimonious weak SH model, they found a g gap close to zero and two specific
factors showing non-trivial sex differences. Irwing (2012) analyzed the standardization
sample of the WAIS-III using a bifactor model and reported Cohen’s d gaps of .22 for g, but
while the loadings were reported, the specific factor mean differences were not. Palejwala &
Fine (2015) reported the d gaps of .21, .21, -.17 for g, Gs, and Gv, with Gsm factor fixed to
zero, on the WPPSI-IV test, but the loadings are not reported. Reynolds et al. (2008)
analyzed the gender differences in the KABC-II across different age groups between 6 and
18 years old. After fitting a parsimonious weak SH model, they discovered that the equality
constraint on the g factor mean did not worsen model fit in 3 of the 4 age subgroups. In the
end, there is no compelling evidence that g is the main source of the subtest differences
between sex groups.

So far SH has not been tested by directly comparing the correlated factors and the bifactor
models. An advantage of the bifactor is that the specific and general factors are completely
separated while the specific factors are represented as residuals in a higher order model
(Bornovalova et al., 2020). This leads to several issues. The first is that the bifactor model

8 The result of their MGCFA analysis was displayed in full in their supplementary materials.



produces purer measures of specific abilities (Murray & Johnson, 2013, p. 420). The second
is that the higher order model posits, unrealistically, that the specific factors explain all the
covariance among the observed test scores while the bifactor model posits that the specific
factors account for the test scores’ residual covariance that remains after extraction of the
covariance that is due to g (Beaujean et al., 2014; Gignac, 2008). The third is that the
proportionality constraints, imposed by the higher order but not by the bifactor, disallow any
variation in the relative composition of variances attributable to specific abilities and g
(Beaujean et al., 2014). Given that a more definite support of SH should involve partitioning
the proportion due to the general factor and the proportion due to specific factors (Dolan,
2000, Table 8), it makes sense to take advantage of the bifactor structure.

While there are theoretical justifications for preferring a bifactor over a higher order factor
structure, model comparison is complicated by the findings that fit indices used to evaluate
models are biased in favor of the bifactor model when there are unmodelled complexities
(Murrary & Johnson, 2013). Yet a pro-bifactor bias is not a necessary outcome. Assuming no
unmodeled misspecification, fit indices favor a correlated factors model when data were
sampled from a true correlated factors structure, with unequal factor correlations (Morgan et
al., 2015). When within-factor correlated residuals are misspecified, all fit indices correctly
favor the correlated factors model regardless of conditions, except for SRMR, which
incorrectly favors the bifactor model (Greene et al., 2019, Table 4). But whenever fit indices
favor a bifactor structure, Murray & Johnson (2013) argued that the difference in fit must be
very large to establish the superiority of the bifactor, in order to overcome this inherent bias.
Given that the bifactor makes theoretical sense at explaining the structure of general
intelligence, model comparison can still be made, while keeping in mind the aforementioned
shortcomings.

2. Method

2.1. Data

The Project Talent is the largest study ever conducted in the United States involving 377,016
9th-12th grade students during 1960 and drawn from all of the 50 states (Flanagan et al.,
1962). The sample includes 4,481 twins and triplets from 2,233 families, and 84,000 siblings
from 40,000 other families. The goal was to identify individuals’ strengths (i.e., “talents”) and
steer them on to paths where those strengths would be best utilized. To this end, data on
personal experiences, activities, aptitudes and abilities, health and plans for college, military
service, marriage and careers were collected. Follow-up surveys were conducted until the
students were age 29.

All analyses, including descriptive statistics, employ student weights, “BY_WTA”. The sample
used in this study includes 70,776 White males, 71,381 White females, 2,443 Black males,
3,642 Black females with a weighted mean age of 15.9, 15.8, 16.0, and 15.8, respectively.
The lower proportion of Black males compared to Black females may be explained by the
higher likelihood of Black males dropping out of high school.

The Project Talent administered a considerable amount of tests, a great portion of which
required specific knowledge. Detailed information provided by Wise et al. (1979). Major et al.
(2012) considered the following 37 aptitude/cognitive subtests as cognitively relevant:



S1. Vocabulary (21 items). This scale gives some indication of the student’s general
vocabulary.
S2. Literature (24 items). This scale measures familiarity with the world of literature, including
prose and poetry.
S3. Music (13 items). This scale is intended to indicate the amount of musical information.
S4. Social Studies (24 items). This scale covers facts and concepts from the fields of history,
economics, government and civics.
S5. Mathematics (23 items). This scale measures the vocabulary of mathematics,
mathematical notation, and the understanding of mathematical concepts.
S6. Physical Science (18 items). This scale includes items about chemistry, physics,
astronomy, and other physical sciences.
S7. Biological Science (11 items). This scale includes items about botany, zoology, and
microbiology.
S8. Aeronautics and Space (10 items). This scale includes items about flying technique,
navigation, jet planes, and space exploration.
S9. Electricity and Electronics (20 items). This scale stresses information that is acquirable
through direct experience in the construction and maintenance of electrical and electronic
equipment.
S10. Mechanics (19 items). This scale includes many items about automobiles and few
others with common machines and tools related with mechanical activities.
S11. Art (12 items). This scale measures general knowledge about art, but excluding
technical knowledge related to proficiency as an artist.
S12. Law (9 items). This scale measures general knowledge law that can be acquired
through books or news reports concerning legal affairs.
S13. Health (9 items). This scale includes items related to practical health maintenance and
nutrition, and common health care techniques.
S14. Bible (15 items). This scale measures general knowledge about the characters and
teachings in the Bible.
S15. Theater (8 items). This scale has items dealing primarily with theater and ballet.
S16. Miscellaneous (10 items). This scale contains miscellaneous knowledge questions.
S17. Memory for Sentences (16 items). This scale measures the ability to memorize simple
descriptive statements and to recall a missing word in a later sentence.
S18. Memory for Words (24 items). This scale measures another type of rote memory–the
ability to memorize foreign words corresponding to common English words.
S19. Disguised Words (30 items). This scale measures the ability to form connections
between letters and sounds.
S20. Word Spelling (16 items). This scale measures the ability to spell–not size of
vocabulary.
S21. Capitalization (33 items). This scale indicates the degree of mastery of the rules of
capitalization.
S22. Punctuation (27 items). This scale measures knowledge of the appropriate use of
standard punctuation marks.
S23. English Usage (25 items). This scale measures knowledge of preferred usage.
S24. Effective Expression (12 items). This scale measures the ability to recognize whether
an idea has been expressed clearly, concisely, and smoothly.
S25. Word Function in Sentences (24 items). This scale measures the sensitivity to
grammatical structure.



S26. Reading Comprehension (48 items). This scale measures the ability to comprehend
written materials, including passages on a wide range of topics.
S27. Creativity (20 items). This scale measures the ability to find ingenious solutions to a
variety of practical problems.
S28. Mechanical Reasoning (20 items). This scale measures the ability to deduce the effects
of the operation of everyday physical forces (e.g., gravity) and basic kinds of mechanisms
(e.g., gears, pulleys, wheels, etc.)
S29. Visualization in 2D (24 items). This scale measures the ability to visualize how diagrams
would look after being turned around on a flat surface in contrast to being turned over.
S30. Visualization in 3D (16 items). This scale measures the ability to visualize how a two
dimensional figure would look after it had been folded to make a three-dimensional figure.
S31. Abstract Reasoning (15 items). This scale measures the ability to determine a logical
relationship or progression among elements of a complex pattern.
S32. Arithmetic Reasoning (16 items). This scale measures the ability to reason in the
manner required to solve arithmetic problems, but does not involve complex computation.
S33. High School Math (24 items). This scale measures mathematics taught up to 9th grade,
and focuses mainly on elementary algebra, fractions, decimals, percents, square roots,
intuitive geometry.
S34. Arithmetic Computation (72 items). This scale measures speed and accuracy of
computation using the four basic operations and whole numbers.
S35. Table Reading (72 items). This scale measures speed and accuracy in a
non-computational clerical task, involving obtaining information from tables.
S36. Clerical Checking (74 items). This scale measures speed and accuracy of perception in
a simple clerical task, by determining whether the pairs of names are identical.
S37. Object Inspection (40 items). This scale measures speed and accuracy in perception of
form, and requires to visually spot differences in small objects.

Three tests have been removed in the present analysis: memory for sentences (S17),
memory for words (S18), and creativity (S27). The memory tests are highly correlated with
each other but are poorly correlated with all other variables (between r=.10 and r=.20), which
makes them unsuitable for CFA. Creativity has moderate correlations with other variables,
has no main loading and its loadings are of modest or small size. Thus, a total of 34
aptitude/cognitive tests are used.

2.2. Analysis

All statistical analyses are done using R and, in particular, the lavaan package for MGCFA
models. To test SH, competing models are employed, a correlated-factors (CF) as the non-g
model, a higher-order factor (HOF) and a bifactor (BF) as representing two different
structures of the g model. Another variation of the HOF structure is the
Visual-Perceptual-Image Rotation (VPR) that was tested by Major et al. (2012) in Project
Talent. In their study, the VPR-g model fitted much better than the CHC-based HOF g model.
The VPR was initially used in this study but it was found that the VPR model does not fit
better than the CHC-based HOF model and produces sometimes inadmissible solutions such
as negative variance. For this reason, the result for the VPR is not reported here but



available in the supplementary material.9 Figure 1 displays hypothetical competing CFA
models that are investigated in the present analysis: 1) the correlated factors model which
specifies that the first-order specific factors are correlated without the existence of a general
factor, 2) the higher order factor model which specifies that the second-order general factor
operates through the first-order specific factors and thus only indirectly influences the
subtests, 3) the bifactor model which, unlike the higher order factor, specifies that both the
general and specific factors, have direct influences on the subtests.

Figure 1. Illustration of the competing CFA models

To evaluate and compare model specifications, fit indices such as CFI, RMSEA, RMSEAD,
SRMR and McDonald’s Noncentrality Index (Mc) are used to assess model fit, along with the
traditional χ2. Higher values of CFI and Mc indicate better fit, while lower values of χ2,
RMSEA, RMSEAD, SRMR indicate better fit. Simulation studies established the strength of
these indices to detect misspecification (Chen, 2007; Cheung & Rensvold, 2002; Khojasteh
& Lo, 2015; Meade et al., 2008). However, with respect to ∆RMSEA, doubts about its
sensitivity to detect worse fit among nested models were raised quite often. Savalei et al.
(2023) provided the best illustration of its shortcomings. According to them, this was
expected because the initial Model A often has large degrees of freedom (dfA) relative to the
degrees of freedom introduced by the constraints in Model B (dfB), resulting in very similar
values of RMSEAB and RMSEAA, hence a very small ΔRMSEA. For evaluating nested
models, including constrained ones, their proposed RMSEAD solves this issue. RMSEAD is
based on the same metric as RMSEA and is interpreted exactly the same way: a value of .08
suggests fair fit while a value of .10 suggests poor fit.

For overall model fit, Hu & Bentler (1999) recommended the following cutoffs based on a
simulated 3-factor correlated model with 15 variables: a value close to .95 for CFI, .90 for Mc,
.08 for SRMR, .06 for RMSEA would indicate good fit. This being noted, there is no such
thing as a one-size-fits-all cutoff. Cheung & Rensvold (2001) explained that increased model

9 Major et al. (2012) analyzed and used multiple imputation on the entire sample and separated the
analysis by gender and by grade level (9-12). They included Memory for Words, Memory for
Sentences, and Creativity subtests. In the present study, the VPR fits marginally better with a
CFI=.002 at best, regardless of the subgroups being analyzed, and this remained true even after
analyzing subgroups by grade level (9-12).



complexity (e.g., increased number of indicators) has a tendency to reduce model fit. Sivo et
al. (2006, Tables 8-10) found that the optimal cutoff value of fit indices for rejecting
misspecified models depends on sample size: it decreases for Mc and increases for RMSEA.

A few studies have proposed fit index cutoffs for determining non-invariance. Meade et al.
(2008) simulated multiple correlated factors models with varying levels of non-invariance
and, assuming Type I error rate of .01, recommended a cutoff of .002 in ∆CFI to detect metric
and scalar non-invariance while the cutoff for Mc depends on the number of factors and
items (their Table 12), with most realistic conditions (i.e., up to 6 factors and up to 30 total
items) lying between ∆Mc .0065 and .0120. Chen (2007) simulated a 1-factor model with
varying the proportion of non-invariant indicators and pattern of non-invariance (unidirectional
or bidirectional bias) and proposed several cutoffs: for testing loading invariance a change of
≥.005 in CFI, supplemented by a change of ≥.010 in RMSEA or a change of ≥.025 in SRMR;
for testing intercept or residual invariance, a change of ≥.005 in CFI, supplemented by a
change of ≥.010 in RMSEA or a change of ≥.005 in SRMR. The values of ∆Mc vary greatly
depending on the condition and invariance steps (see Tables 4-6) but often lie between .010
and .015. Khojasteh & Lo (2015, Table 1) investigated the performance of fit indices in
bifactor models for metric invariance and recommended the cutoffs .077-.101 for ΔMc,
.003-.004 for ΔCFI, .021-.030 for ΔSRMR, .030-.034 for ΔRMSEA; with cutoffs smaller as
sample sizes grow (from 400 to 1,200). These cutoffs will be considered together to evaluate
model fit in the present study.

Sometimes, invariance does not hold. An interesting strategy is to compute the effect size to
determine their importance. Gunn’s et al. (2020) propose a standardized effect size called
SDI, Signed Difference in expected Indicator, which provides the magnitude as well as the
direction of the bias in standardized units similar to Cohen’s d. A glaring issue is its
dependence on the size of the observed SD of the “offending” subtest in the focal group.
Groskurth (2023) proposes the Measurement Invariance Violation Indices (MIVIs) as effect
sizes which are computed using the pooled SD of the latent factor. The latent SD has the
advantage of being the same for all subtests loading onto that factor and consisting of true
score variance only. Since observed SDs vary across subtests, the effect sizes are not
comparable across subtests. At the same time, MIVIs are partially but not fully standardized
due to not using the observed SD, making them comparable within but not across factors.
MIVIs should yet produce more accurate effect sizes. These effect sizes have limited
applications due to the assumption of invariant loadings when computing intercept
differences or, more generally, the assumption of no cross loadings at all. Since effect sizes
are still very useful, they will be computed whenever possible, having in mind these
limitations.

MGCFA starts by adding additional constraints to the initial configural model, with the
following incremental steps: metric, scalar, strict. A rejection of configural invariance implies
that the groups use different latent abilities to solve the same set of item variables. A
rejection in metric (loading) invariance implies that the indicators of a latent factor are
unequally weighted across groups. A rejection in scalar (intercept) invariance implies that the
subtest scores differ across groups when their latent factor means is equalized. A rejection in
strict (residual) invariance implies there is a group difference in specific variance and/or
measurement error. When invariance is rejected, partial invariance must release parameters
until acceptable fit is achieved and these freed parameters must be carried on in the next



levels of MGCFA models. The variances of the latent factors are then constrained to be
equal across groups to examine whether the groups use the same range of abilities to
answer the subtests. The final step is to determine which latent factors can have their mean
differences constrained to zero without deteriorating the model fit: a worsening of the model
fit indicates that the factor is needed to account for the group differences. These model
specifications will be presented in Table 1 further below.

While it is well established that measurement invariance requires that factor patterns, factor
loadings and intercepts should be equal across groups. But there is no such agreement
regarding residuals, which are composed of specific and error variances.

Several authors recommend strict invariance. Lubke & Dolan (2003) reported that a model
with free residuals overestimates slightly the latent mean differences whenever the groups
differ in their residuals because the model has to compensate for the differences in residuals.
DeShon (2004, p. 146) explained that the common view that item specific variance is
removed from the latent variable is based on the assumption that item uniquenesses are
uncorrelated with each other or the latent variable. Violating this assumption will affect the
estimation of the latent variables. Widaman & Reise (1997) argued that strict invariance has
the advantage of having fewer parameters to estimate but the step can be skipped if the
difference in error variance is justified (e.g., growth model with an age-related variable).

But other authors do not recommend strict invariance. Vandenberg & Lance (2000, p. 57)
highlight the idea that latent variables are theoretically perfectly reliable, which makes strict
invariance useless when evaluating latent means but useful when evaluating the reliability
differences between groups. Little (1997, p. 55; 2013, p. 143) noted that strict invariance has
a biasing effect if the group difference in residuals is small. Specifically, if the sum of the
specific and random variance is not equal across groups, the amount of misfit that the
constraints on the residuals would create must permeate all other estimated parameters.

Because the present analysis compares the contribution of each latent mean differences and
model fit between competing models, strict invariance is ignored as it does not seem crucial
for testing SH.

Table 1 presents a summary of possible models (including strict invariance levels that are
ignored in the present study) for testing invariance and then g-models. The configural model
allows group differences in loadings (λ1≠λ2), covariance matrix (Ψ1≠Ψ2), intercepts (ν1≠ν2),
residuals (Θ1≠Θ2) and finally latent means equal to zero (δ=0). The metric model adds group
equality on loadings, then the scalar model adds group equality on subtests’ means (i.e.,
intercepts), then the strict model adds group equality on the subtests’ residuals (composed of
specific and random variances). Only after scalar (or partial scalar) is set, that the latent
factor means will differ across groups (δ≠0). It is assumed that full invariance does not hold
at all levels. In this case, the partial invariance at one level is carried on in the next models.
Scalar (M3) and partial scalar (M3a) models will then be nested under M2a but not M2.
Similarly, M4 and M4a are nested under M3a but not M3. Then, M5 adds a group equality on
latent variances (Ψ*1=Ψ*2) and is nested under M4a. M6a specifies all non-g factor means to
be zero, M6b specifies some non-g factor means to be zero, M6c specifies the g factor
means to be zero. Understanding the nesting levels is important for the interpretation of
RMSEAD. For example, since M6a, M6b and M6c are competing models, all nested under



M5, the RMSEAD for these models expresses their fit only with respect to M5, but not with
respect to each other. The same principle applies to partial metric, partial scalar and partial
strict. The RMSEAD expresses the fit of the partial model with respect to the previous level
(M4a vs M3a, but not M4a vs M4).

Table 1. Summary of a typical MGCFA model

Model Specification Nesting

M1. Configural λ1≠λ2+Ψ1≠Ψ2+ν1≠ν2+Θ1≠Θ2+δ=0

M2. Metric M1 but adds (all) λ1=λ2 under M1

M2a. Partial Metric M1 but adds (partial) λ1=λ2 under M1

M3. Scalar M2a but adds (all) ν1=ν2+ (all)δ≠0 under M2a

M3a. Partial Scalar M2a but adds (partial) ν1=ν2+ (all)δ≠0 under M2a

M4. Strict M3a but adds (all) Θ1=Θ2 under M3a

M4a. Partial Strict M3a but adds (partial) Θ1=Θ2 under M3a

M5. Lv variance M4a but adds (all) Ψ*1=Ψ*2 under M4a

M6a. Strong SH M5 but adds (all) δnon-g=0 under M5

M6b. Weak SH M5 but adds (partial) δnon-g=0 under M5

M6c. No SH M5 but adds δg=0 under M5

The biggest concern regarding the validity of the results is the possible lack of power for the
Black-White analysis due to the large sample unbalances, with a ratio of 1:31 and 1:21 for
Black-White males and Black-White females, respectively. Yoon & Lai (2018) reported that a
higher ratio of largest/smallest sample not only reduces power in detecting invariance but
also decreases power in detecting misspecified models, as the fit indices show improvement
as the sample unbalances increase. These authors proposed a subsampling approach.
Consequently, slice_sample() from the dplyr R package was used to produce equal samples
of Blacks and Whites, yielding a random sample of 2443 Whites for the male group and a
random sample of 3642 Whites for the female group. Analyses were re-run 10 times using 10
random samples of White students in each gender group.

3. Result

3.1 Preparing data and testing assumptions

Missing data is handled with multiple imputation using mice package. Because the Predictive
Mean Matching (PMM) method of imputation calculates the predicted value of target variable
Y according to the specified imputation model, the imputation was conducted within race and
within gender groups, totaling four imputations. It is inappropriate to impute the entire sample
because it implies that the correlation pattern is identical across groups, an assumption that



may not be true and may eventually conceal measurement non-invariance. The imputation is
done for each subgroup conditioning that each case has at least 10 non-missing values (i.e.,
if a student only completed a few subtests, he/she was removed from the data prior to
imputation). This ensures that only the students who provide enough information are used in
the PMM method.

Maximum Likelihood (ML), used as the estimation method for CFA models, typically assumes
normal distribution. Histograms show that the following subtests have a non-normal
distribution: Math, Aeronautics, Electricity & Electronics, Capitalization, Word Functions,
Table Reading. These variables are normalized, because achieving univariate normality
helps achieving multivariate normality. All subtests variables are then z-score transformed
because some variables vary so widely in their standard deviation, after normalization with
power or log transformation, that it causes estimation problems.10

Univariate normality is then scrutinized. Curran et al. (1996) determined that univariate
skewness of 2.0 and kurtosis of 7.0 are suspect, and that ML is robust to modest deviation
from multivariate non-normality but that ML χ2 is inflated otherwise. Values for univariate
kurtosis and skewness were acceptable, although the kurtosis values for Table Reading are
a little high among White males (3.2) and White females (4.58). On the other hand,
multivariate normality was often rejected. The multivariate non-normality displayed by the QQ
plot was moderate for Black-White analysis in both male and female groups and sex analysis
in the White group but perfectly fine for sex analysis in the Black group.

Exploratory Factor Analysis (EFA) was used to determine the appropriate number of factors.
Similar to Major et al. (2012), it was found here that the 6-factor model was the most
interpretable in all subgroups tested. The 4- and 5-factor models blend indicators into factors
which are more ambiguous (math and english tests form one common factor; information and
science tests form one common factor) and cause severe unbalances in factor sizes. The 7-
and 8-factor models produce additional factors which are not associated with any particular
ability or do not have any indicators with high loading. EFA reveals a large number of
medium-size cross loadings. Since the results from simulation studies (Cao & Liang, 2023;
Hsu et al., 2014; Xiao et al., 2019; Ximénez et al., 2022; Zhang et al., 2023) indicated that
ignoring small cross loadings, typically set at .15 or .20 in these studies, has a tendency to
reduce the sensitivity in commonly used fit indices, cross loadings are allowed when the
average of the two groups is close to .20 but with a minimum of .15 per group.

The 6 factors in the best EFA model can be defined as english, math, speed, information (or
knowledge), science, and spatial. From the perspective of the CHC structure, according to
Major et al. (2012), they can be interpreted as, respectively, Reading & Writing Ability (Grw),
Quantitative knowledge (Gq), Processing Speed (Gs), Comprehension-Knowledge (Gc),
Science Knowledge (GK), and Visual Processing (Gv). In reality though, science knowledge
has no counterpart in the CHC structure.

10 It is indeed commonly suggested in statistics textbooks that researchers keep the original metric of
the variables, but z-score transformation of all variables as opposed to only a few ones does not alter
model fit or parameter estimates (at least, the fully standardized estimates) or even the standard
errors. An advantage of z-score transforming all variables at once is to ease interpretation, since they
are now on the same scale.



Initially, the MGCFA models were conducted without disaggregating by gender. But because
it was found that the tests were biased with respect to gender, disaggregating by gender
group appeared to be a more appropriate approach.

Finally, all analyses apply an equality constraint on the regression of each subtests on age.
This is an important step because a non-invariance in these regressions implies that the
effect of age on subtests differs between groups, which complicates group comparison.

3.2 Black-White analysis

Overall fit is acceptable in all models, except maybe for Mc. The configural and regression
invariance both hold perfectly, thus only the next steps will be critically analyzed. Yet, due to
potential lack of power, it was decided to investigate both metric and scalar levels by using
modification indices to reveal the source of misfit based on the higher χ2 values, supplied by
effect sizes whenever possible. Regarding strict invariance, this level is always severely
rejected in the female group (∆CFI=.005-.006) and rejected to a smaller extent in the male
group (∆CFI=.003). Details of these analyses are provided in the supplementary material.

Competing models are evaluated based on their optimal constraints. In the male group, the
BF fits marginally better than the CF model, while the CF model fits much better than HOF.
Given the fit indices being pro-bifactor biased, this superiority of the BF model is ambiguous.
In the female group, BF fits much better than the CF model, but the HOF also fits much
worse than the CF model. This finding of a worse fit for HOF is puzzling, especially for
establishing the superiority of g models. Admittedly though, the BF model makes theoretically
more sense than the HOF.

3.2.1 Black-White male group

The model specification is displayed as follows:

english =~ S1 + S19 + S20 + S21 + S22 + S23 + S24 + S25 + S26 + S31 + S34
math =~ S5 + S6 + S25 + S32 + S33 + S34
speed =~ S19 + S29 + S34 + S35 + S36 + S37
info =~ S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S11 + S12 + S13 + S14 + S15 + S16 +
S19 + S26
science =~ S1 + S6 + S7 + S8 + S9 + S10 + S28
spatial =~ S28 + S29 + S30 + S31 + S37

Table 2 contains a summary of the fit indices of the CF model and the freed parameters.
Using conventional cutoff criteria, and even strict criteria, all model constraints do not cause
a serious deterioration in fit. At the metric level, three loadings display relatively larger χ2
values in modification indices. Partial metric removes the equality constraints and reveals
non-trivial group differences in those loadings (based on their unstandardized units), despite
no improvement in fit except for Mc. Effect sizes are not computed due to cross loadings. At
the intercept level, two subtests display much larger χ2 values than other subtests in the
modification indices. Partial scalar removes the constraints but it barely improves model fit,
despite effect sizes being modest for Physical Science when using SDI (d=.36) and MIVIs
(d=.31) and for Arithmetic Reasoning when using SDI (d=.35) and MIVIs (d=.33). These



subtests are biased against Blacks. Adding first an equality constraint on latent covariances
(M5) and then on latent variances (M6) does not worsen the fit in either case. A more
parsimonious model (M7) adds a constraint on the speed factor mean due to having small
group difference, but does not worsen the model fit.

Table 2. Black-White differences among males using Correlated Factors

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 70578 495 .956 .044 .034 .620

M1. Configural 69791 990 .955 .044 .033 .625

M2. Regression 70088 1024 .955 .043 .034 .624 .014 [.012:.015]

M3. Metric 71549 1069 .954 .042 .035 .618 .028 [.026:.029]

M3a. Partial
Metric1

71072 1066 .954 .042 .035 .620 .023 [.022:.025]

M4. Scalar 75161 1094 .951 .043 .035 .603 .059 [.058:.061]

M4a. Partial
Scalar2

73762 1091 .952 .043 .035 .609 .051 [.049:.053]

M5. Lv
covariance

74582 1106 .952 .043 .036 .605 .035 [.033:.037]

M6. Lv
var-covariance

74827 1112 .951 .043 .036 .604 .032 [.028:.035]

M7. Lv reduced 74962 1113 .951 .043 .036 .604 .047 [.039:.056]
1 Freed parameters (by descending order of χ2 size) are: english =~ word functions, math =~ word
functions, speed =~ disguised words.
2 Freed parameters (by descending order of χ2 size) are: mechanics~1, physical science~1, arithmetic
reasoning~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Table 3 contains a summary of the fit indices of the HOF model and the freed parameters.
The appearance of good fit is once again misleading. At the metric level, three loadings
display relatively larger χ2 values in modification indices. Partial metric releases them and
this improves model fit. At the scalar level, Physical Science and Mechanics are once more
associated with very large χ2 and released. The fit at the partial scalar barely improved.
Constraining the latent variances (M5) to be equal does not worsen the model fit. This model
can be taken as a more expanded version of the weak SH model because all factor means
are estimated. Upon examining the factor means, english, speed, information display group
differences close to zero. Their equality constraints do not worsen model fit (M6b). Compared
to either models estimating g and non-g factor means, the strong SH (M6a) model fits barely
worse (although the RMSEAD is close to .08, indicating not so good fit). It is probably safe to
conclude that the weak SH model is superior.

Table 3. Black-White differences among males using Higher Order Factor



Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 84254 504 .947 .048 .040 .564

M1. Configural 83357 1008 .946 .047 .040 .570

M2. Regression 83657 1042 .946 .047 .040 .569 .014 [.012:.016]

M3. Metric 85893 1092 .944 .046 .042 .560 .033 [.031:.034]

M3a. Partial
Metric1

84945 1089 .945 .046 .041 .564 .025 [.024:.027]

M4. Scalar 88575 1116 .942 .046 .041 .550 .056 [.054:.057]

M4a. Partial
Scalar2

87413 1114 .943 .046 .042 .555 .048 [.046:.049]

M5. Lv variance 87615 1121 .943 .046 .042 .554 .025 [.022:.029]

M6a. Strong SH 88785 1127 .942 .046 .042 .550 .076 [.072:.079]

M6b. Weak SH 87648 1124 .943 .046 .042 .554 .019 [.014:.024]
1 Freed parameters (by descending order of χ2 size) are: g =~ math, english =~ word functions, math
=~ high school math.
2 Freed parameters (by descending order of χ2 size) are: physical science~1, mechanics~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Table 4 contains a summary of the fit indices of the BF model and the freed parameters.
Modification indices are used to detect the source of misfit. At the metric level, two loadings
show much larger χ2. Partial metric shows small improvement. At the scalar level, the fit
deteriorates very little, but the same subtests were the source of misfit; namely, Physical
Science and Mechanics. Partial scalar barely improves model fit. Adding constraints on the
latent variances (M5) does not affect model fit. This model, like its HOF counterpart, can be
taken as a less parsimonious version of the weak SH. This model fits a little better than the
strong SH (especially judging by RMSEAD) but clearly better than the no SH (∆CFI=.003). A
more parsimonious weak SH model (M6b) adds a constraint on english, speed and
information factor means without worsening the model fit.

Table 4. Black-White differences among males using Bifactor

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 65713 476 .959 .043 .028 .640

M1. Configural 65836 952 .957 .043 .029 .642

M2. Regression 66133 986 .957 .042 .030 .641 .014 [.012:.015]

M3. Metric 68480 1064 .956 .042 .032 .631 .026 [.025:.027]



M3a. Partial
Metric1

67753 1062 .956 .041 .031 .634 .022 [.021:.023]

M4. Scalar 70835 1089 .954 .042 .032 .621 .053 [.051:.055]

M4a. Partial
Scalar2

69688 1087 .955 .042 .032 .626 .043 [.041:.045]

M5. Lv variance 69961 1094 .955 .041 .032 .625 .029 [.026:.032]

M6a. Strong SH 71036 1100 .954 .042 .033 .620 .065 [.062:.069]

M6b. Weak SH 69988 1097 .955 .041 .032 .625 .014 [.009:.019]

M6c. No SH 74348 1098 .952 .043 .043 .606 .161 [.157:.166]
1 Freed parameters (by descending order of χ2 size) are: g =~ high school math, g =~ word functions.
2 Freed parameters (by descending order of χ2 size) are: physical science~1, mechanics~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

3.2.2 Black-White female group

The model specification is displayed as follows:

english =~ S1 + S13 + S19 + S20 + S21 + S22 + S23 + S24 + S25 + S26 + S31 + S34
math =~ S5 + S25 + S32 + S33 + S34
speed =~ S19 + S34 + S35 + S36 + S37
info =~ S1 + S2 + S3 + S4 + S7 + S8 + S11 + S12 + S13 + S14 + S15 + S16 + S19 + S26
science =~ S1 + S6 + S7 + S8 + S9 + S10
spatial =~ S28 + S29 + S30 + S31 + S37

Table 5 contains a summary of the fit indices of the CF model and the freed parameters.
Unlike the scenario in the male group, the female group usually displays larger fit decrement.
At the metric level, modification indices reveal four loadings with larger χ2. Partial metric
releases them but it barely improves fit. At the scalar level, values of ∆CFI=.004 and
RMSEAD=.070 (which is close to .08) are concerning. Partial scalar releases Mechanics,
Clerical Checking, Arithmetic Computation and Arithmetic Reasoning due to having by far the
largest χ2. Model fit improves, especially for CFI, RMSEAD, and Mc. The effect sizes are
nowhere small for Mechanics, using SDI (d=.67) and MIVIs (d=.48), and for Clerical
Checking, using SDI (d=-.43) and MIVIs (d=-.43), and for Arithmetic Reasoning, using SDI
(d=.43) and MIVIs (d=.39), with positive values treated as bias against the focal group (i.e.,
Black). Adding equality constraints first on latent covariances (M5) and then on the latent
variances (M6) produced slightly worse fit at either step. It is possible that the latent
variance-covariance matrix is different across groups, which may undermine group
comparison to some extent. A more parsimonious model (M7) adds equality constraint on the
speed factor mean due to being quite small. It does not deteriorate model fit but the high
value of RMSEAD (close to .08) leaves some doubts.

Table 5. Black-White differences among females using Correlated Factors

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]



M0. Baseline 70111 499 .950 .043 .032 .629

M1. Configural 69163 998 .948 .043 .032 .635

M2. Regression 69589 1032 .948 .042 .033 .633 .016 [.015:.018]

M3. Metric 71432 1073 .946 .042 .034 .626 .032 [.031:.033]

M3a. Partial
Metric1

70400 1069 .947 .042 .033 .630 .023 [.022:.025]

M4. Scalar 76280 1097 .943 .043 .035 .606 .070 [.069:.072]

M4a. Partial
Scalar2

72652 1093 .945 .042 .034 .621 .047 [.046:.049]

M5. Lv
covariance

74067 1108 .944 .042 .037 .615 .044 [.042:.047]

M6. Lv
var-covariance

75159 1114 .943 .042 .038 .610 .062 [.058:.065]

M7. Lv reduced 75451 1115 .943 .042 .038 .609 .075 [.067:.084]
1 Freed parameters (by descending order of χ2 size) are: english =~ word functions, info =~ health,
math =~ word functions, speed =~ disguised words.
2 Freed parameters (by descending order of χ2 size) are: mechanics~1, clerical checking~1, arithmetic
computation~1, arithmetic reasoning~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Table 6 contains a summary of the fit indices of the HOF model and the freed parameters. At
the metric level, four loadings showed large χ2, especially the second-order loadings of math
and english on g. Partial metric allows them to be free, the improvement in fit is minor. At the
scalar level, the same four subtests are found to be especially biased. Partial scalar removes
their equality constraints and this improves model fit enough. Adding a constraint on the
latent variances (M5) does not seem to worsen the model fit. Similarly, the strong SH model
fits almost just as well. However, a more parsimonious model (M6b) which adds equality
constraints on english, speed, science factor means, fits better than the strong SH, especially
when considering the much lower RMSEAD.

Table 6. Black-White differences among females using Higher Order Factor

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 79749 508 .944 .046 .037 .590

M1. Configural 78750 1016 .941 .045 .037 .595

M2. Regression 79176 1050 .940 .045 .038 .594 .016 [.015:.018]

M3. Metric 82098 1096 .938 .044 .041 .583 .038 [.037:.039]



M3a. Partial
Metric1

80609 1092 .939 .044 .039 .589 .028 [.027:.029]

M4. Scalar 86643 1119 .935 .045 .040 .565 .071 [.070:.073]

M4a. Partial
Scalar2

82974 1115 .937 .044 .040 .579 .048 [.047:.050]

M5. Lv variance 83892 1122 .937 .044 .042 .576 .049 [.046:.052]

M6a. Strong SH 84863 1128 .936 .044 .042 .572 .067 [.064:.071]

M6b. Weak SH 84004 1125 .937 .044 .042 .575 .035 [.030:.040]
1 Freed parameters (by descending order of χ2 size) are: english =~ word functions, g =~ english, g =~
math, info =~ health.
2 Freed parameters (by descending order of χ2 size) are: mechanics~1, clerical checking~1, arithmetic
computation~1, arithmetic reasoning~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Table 7 contains a summary of the fit indices of the BF model and the freed parameters. At
the metric level, four loadings have by far the largest χ2 values. Partial metric removes their
constraints but does not improve model fit: CFI is unchanged and Mc or RMSEAD barely
changed. It is possible that the model contains many loadings with small or modest group
differences. At this point, freeing more loadings can only undermine group comparison in
latent means, despite the assumption of invariant loadings being somewhat ambiguous. At
the scalar level, values of ∆CFI=.004 and RMSEAD=.074 are concerning, but this time, the
most biased subtests differ a little: mechanics, arithmetic computation, physical science and
arithmetic reasoning. Partial scalar releases them, with acceptable improvement in fit. Adding
a constraint on the latent variances (M5) does not seem to worsen the model fit. Compared
to this model, the strong SH shows worse fit, as shown by Mc and RMSEAD values. The
decrement in fit for the no SH is much worse in comparison when judged by RMSEAD. Both
models are therefore rejected. A more parsimonious version of model M5 constrained math
factor means to be equal, without any change in model fit (M6b).

Table 7. Black-White differences among females using Bifactor

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 58518 480 .959 .040 .027 .679

M1. Configural 57816 960 .957 .040 .028 .684

M2. Regression 58247 994 .956 .039 .029 .683 .016 [.015:.018]

M3. Metric 61807 1068 .954 .039 .032 .667 .032 [.031:.033]

M3a. Partial
Metric1

60806 1064 .954 .039 .032 .671 .028 [.027:.029]

M4. Scalar 66601 1091 .950 .040 .033 .646 .074 [.072:.075]



M4a. Partial
Scalar2

63741 1087 .952 .039 .033 .659 .057 [.055:.058]

M5. Lv variance 64880 1094 .951 .039 .034 .654 .057 [.054:.060]

M6a. Strong SH 66814 1100 .950 .040 .035 .645 .080 [.077:.084]

M6b. Weak SH 64889 1095 .951 .039 .034 .654 .010 [.003:.020]

M6c. No SH 68774 1096 .948 .041 .039 .637 .192 [.186:.199]
1 Freed parameters (by descending order of χ2 size) are: english =~ word functions, g =~ word
functions, g =~ health, speed =~ disguised words.
2 Freed parameters (by descending order of χ2 size) are: mechanics~1, arithmetic computation~1,
physical science~1, arithmetic reasoning~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

3.2.3 Robustness analyses

Given the aforementioned issue of power, and following the recommendation of Yoon & Lai
(2018), a subsampling approach is used as robustness analysis. The slice_sample() function
in R was applied first when constraining all loadings and intercepts to be equal and second
when releasing these constraints following the results of the main analysis (shown in Tables
2-7). The random sampling method shows mixed evidence of its efficiency. Upon examining
the unstandardized loadings and intercepts in the free model (configural), there are
small-modest variations in the loadings but non-trivial variations in the intercepts. Due to this
randomness, it is no wonder why some data runs yield worse or better fit for all models (e.g.,
.006 in ΔCFI). And although there is consistency among the largest biased subtests, upon
inspecting the χ2 in modification indices, a few more parameters randomly show up as
biased every single run. Their effect on model fit also varies across runs.

Across runs, without releasing any parameters at the metric or scalar level, there is a strong
consistency with which the data rank the models. For both the Black-White male and
Black-White female groups, the BF model always fits better than the CF model (ΔCFI=.010)
which always fits better than the HOF model (ΔCFI=.005). This is a pattern which was
apparent in the analysis using the full sample of Whites, but the advantage of the bifactor
was too small given the positive bifactor bias reported in recent simulations. Another
advantage is the model misfit being more visible. The ΔCFI values for metric and scalar
invariance in the bifactor model are .010 and .005 in the male group and .015 and .010 in the
female group. The ΔCFI values for metric and scalar invariance in the CF model are .007
and .011 in the male group and .007 and .016 in the female group. Finally, in both of these
groups, the superiority of the weak SH (M5 or M6b) over the strong SH or the no SH model is
so much clearer within the bifactor, while this pattern was barely visible using the full White
sample. One glaring issue comes from measurement invariance, as the effect varies across
runs. When attempting to release Mechanics’ means (i.e., intercepts) due to being by far the
most biased subtest (especially among females), it was found that this single one parameter
at partial scalar sometimes causes a change in .001 or .003 in CFI.



Across runs, this time using the constraints applied in the main analyses at each step. This
procedure however is much less optimal. Given the randomness of these sliced samples it is
expected that the same constraints will not hold even across multiple runs. For three data
runs, in the bifactor, partial scalar releases two intercepts but this did not improve model fit at
all. Generally, metric and scalar invariance are both strongly rejected even after releasing
these constraints, and partial scalar for instance always barely improves model fit in both
HOF and BF models. This confirms that the partial constraints applied on the full sample
cannot generalize to random sampling. One notable observation here is that the superiority
of the bifactor is smaller. This is because the partial scalar usually improves model fit very
little in the BF model, as opposed to CF. Modification indices always reveal one (or two)
additional subtest(s) of importance in the BF model, but it changes in every single run, and
releasing it (or them) substantially improves model fit (ΔCFI=.002-.004).

The above results provide strong evidence that random sampling does not override the
conclusion of the main analyses, at least with respect to measurement invariance models.
The variability introduced by random sampling should, in principle, amplify group differences
in the parameters. If some parameters (regressions, loadings, intercepts, residuals) are
equal or almost equal across groups, the added noise in the White group will make invariant
parameters non-invariant even if the random noise should average out. This, in turn, affects
sensitivity because if all parameters now display some small or modest group differences,
then even the most biased parameters will have their impact diluted since now many more
parameters are biased to some extent. On the other hand, the model fit indices distinguish
between competing models much better and in a consistent way, favoring g models (BF vs
CF model; Weak SH vs no SH).

Finally, as an additional robustness analysis, all models for both the Black-White male and
female groups were rerun after removing multivariate outliers with the Minimum Covariance
Determinant (MCD) proposed by Leys et al. (2018) who argued that the basic Mahalanobis
Distance was not a robust method. Although the multivariate normality was barely
acceptable, the number of outliers was large: MCD removed 1,948 White males and 338
Black males, and 1,005 White females and 372 Black females. The fit indices and parameter
estimates in all models barely changed at all (this includes the VPR models as well). If
anything has changed, it was the strict invariance model, which somewhat improved in the
male group, with CFI=.001, and female group, with CFI=.002. In other words, strict
invariance is less violated without outliers.

3.3 Gender analysis

Overall fit is acceptable in all models, except maybe for Mc. In these analyses, lack of power
shouldn’t be an issue since there are no serious sample unbalances. Following the criteria
suggested by Chen (2007), Khojasteh & Lo (2015), Meade et al. (2008) should therefore be
easier than earlier analyses of the Black-White groups. Configural and regression invariance
both fit very well. Thus the next levels of invariance will be the focus. Strict invariance is
always strongly rejected. Details of these analyses are provided in the supplementary
material.

Competing models are evaluated based on their optimal constraints. In the White group, the
BF fits marginally better than the CF model, which isn’t telling anything due to fit indices



slightly favoring the bifactor, whereas the CF model fits largely better than the HOF model. In
the Black group, the CF and HOF models fit equally well whereas the BF model fits much
better than either of these models. At first glance, this suggests that g explains the sex
differences among Blacks but not among Whites.

3.3.1 Male-female White group

The model specification is displayed as follows:

english =~ S1 + S19 + S20 + S21 + S22 + S23 + S24 + S25 + S26 + S31 + S32 + S34
math =~ S4 + S5 + S6 + S25 + S32 + S33 + S34
speed =~ S19 + S29 + S34 + S35 + S36 + S37
info =~ S1 + S2 + S3 + S4 + S5 + S7 + S8 + S11 + S12 + S13 + S14 + S15 + S16 + S19 +
S26
science =~ S1 + S6 + S7 + S8 + S9 + S10 + S13 + S28
spatial =~ S28 + S29 + S30 + S31 + S32 + S37

Here, it must be noted that two cross-loadings were ignored despite averaging .20 because
there would be too many triple loadings otherwise.

Table 8 contains a summary of the fit indices of the CF model and the freed parameters. At
the metric level, fit deteriorates somewhat but this is still acceptable. Scalar invariance
however does not hold. Partial scalar releases the constraints on subtests mean until
acceptable fit is achieved. A total of twelve subtests have to be released and yet the
RMSEAD of .085 indicates not so good fit, although not critical. Adding constraints on the
latent covariances (M5) worsens model fit a little bit but adding constraints on variances (M6)
does not change model fit. A more parsimonious model (M7) then adds an equality constraint
on information factor means and this fits perfectly.

Table 8. Male-female differences among Whites using Correlated Factors

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 156527 492 .945 .047 .039 .578

M1. Configural 115791 984 .958 .041 .030 .668

M2. Regression 119145 1018 .957 .040 .031 .660 .035 [.034:.036]

M3. Metric 128322 1066 .953 .041 .039 .639 .048 [.047:.049]

M4. Scalar 195992 1094 .928 .050 .044 .504 .173 [.172:.174]

M4a. Partial
Scalar1

138034 1082 .950 .042 .039 .618 .085 [.084:.087]

M5. Lv
covariance

141168 1097 .948 .042 .055 .611 .051 [.049:.053]



M6. Lv
var-covariance

142175 1103 .948 .042 .057 .609 .044 [.041:.046]

M7. Lv reduced 142176 1104 .948 .042 .057 .609 NaN*
1 Freed parameters (by descending order of χ2 size) are: social studies~1, theater~1, law~1, music~1,
physical science~1, miscellaneous~1, visualization in 3D~1, health~1, mechanical reasoning~1, high
school math~1, mechanics~1, art~1.
* NaN is the result of a Chi-square that is negative or lower than 1 (model fits better). RMSEAD
therefore cannot be computed.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Table 9 contains a summary of the fit indices of the HOF model and the freed parameters.
Similar to the CF model, metric invariance holds while scalar invariance does not. Partial
scalar releases the constraint on twelve subtests’ means and while ΔCFI=.004 is acceptable,
RMSEAD=.095 is alarming. There are two reasons for not freeing more subtests. First, it
compromises latent mean comparisons even more. Second, after the release of the most
biased subtests (Social Studies, Theater, Law, and Music), each subsequent subtest
contributes very little to model improvement, which means reducing RMSEAD to acceptable
levels would require many more freed subtests. Next step, latent variance (M5) holds well.
Strong SH clearly is rejected. A more parsimonious version of M5 adds an equality constraint
on math factor means and this fits perfectly (M6b).

Table 9. Male-female differences among Whites using Higher Order Factor

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 211618 501 .926 .054 .056 .476

M1. Configural 136882 1002 .950 .044 .035 .620

M2. Regression 140316 1036 .949 .043 .036 .613 .035 [.034:036]

M3. Metric 150122 1089 .945 .044 .043 .592 .047 [.047:.048]

M4. Scalar 215694 1116 .921 .052 .049 .470 .168 [.167:.169]

M4a. Partial
Scalar1

162489 1105 .941 .045 .044 .567 .095 [.094:.097]

M5. Lv variance 165266 1112 .940 .046 .059 .561 .069 [.067:.071]

M6a. Strong SH 276654 1118 .899 .059 .076 .379 .558 [.555:.561]

M6b. Weak SH 165266 1113 .940 .046 .059 .561 NaN*
1 Freed parameters (by descending order of χ2 size) are: social studies~1, theater~1, law~1, music~1,
health~1, miscellaneous~1, physical science~1, visualization in 3D~1, electronics~1, art~1,
mechanics~1, aeronautics~1.
* NaN is the result of a Chi-square that is negative or lower than 1 (model fits better). RMSEAD
therefore cannot be computed.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,



SRMR indicate better fit.

Table 10 contains a summary of the fit indices of the BF model and the freed parameters.
Here, metric invariance holds but upon inspecting modification indices, one loading stands
out as having a much larger χ2. Releasing it improves model fit (M3a). Scalar invariance
does not hold but releasing 7 subtests allows partial scalar (M4a) to achieve acceptable fit. A
constraint on latent variances (M5) perhaps does not hold, as judged by ΔSRMR=.019 and
RMSEAD close to .08. A more parsimonious model (M6b) constraining spatial factor means
to zero causes worse fit, as judged by RMSEAD. Similarly, both the strong SH (M6a) and no
SH (M6c) models are rejected, as judged by all fit indices.

Table 10. Male-female differences among Whites using Bifactor

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 168899 473 .941 .050 .052 .553

M1. Configural 109567 946 .960 .040 .027 .682

M2. Regression 112939 980 .959 .040 .028 .674 .035 [.034:.036]

M3. Metric 123859 1061 .955 .040 .037 .649 .040 [.039:.040]

M3a. Partial
Metric1

121921 1060 .956 .040 .036 .654 .036 [.035:.037]

M4. Scalar 151477 1087 .945 .044 .039 .589 .114 [.113:.115]

M4a. Partial
Scalar2

129982 1080 .953 .041 .037 .635 .066 [.065:.068]

M5. Lv variance 133080 1087 .951 .041 .056 .629 .074 [.071:.076]

M6a. Strong SH 303573 1093 .889 .062 .091 .345 .632 [.630:.635]

M6b. Weak SH 133902 1088 .951 .041 .057 .627 .102 [.095:.108]

M6c. No SH 142850 1088 .948 .043 .064 .607 .671 [.665:.677]
1 Freed parameters (by descending order of χ2 size) are: g =~ vocabulary.
2 Freed parameters (by descending order of χ2 size) are: disguised words~1, physical science~1,
health~1, law~1, visualization in 3D~1, aeronautics~1, biological science~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Robustness analysis was conducted for the gender difference in the White group because
the multivariate normality was non-normal. Removing outliers (which amounted to 1,918
White males and 1,184 White females) using MCD produced similar parameter estimates
and fit indices for all constraints levels and all competing models (including the VPR).

3.3.2 Male-female Black group



The model specification is displayed as follows:

english =~ S1 + S7 + S13 + S19 + S20 + S21 + S22 + S23 + S24 + S25 + S26 + S31 + S34
math =~ S5 + S25 + S32 + S33 + S34
speed =~ S19 + S34 + S35 + S36 + S37
info =~ S1 + S2 + S3 + S4 + S7 + S8 + S10 + S11 + S12 + S13 + S14 + S15 + S16 + S19 +
S26
science =~ S1 + S5 + S6 + S7 + S9 + S10
spatial =~ S28 + S29 + S30 + S31 + S37

Table 11 contains a summary of the fit indices of the CF model and the freed parameters. As
opposed to earlier groups, now metric invariance clearly does not hold (ΔCFI=.008 and
RMSEAD=.074). Partial metric releases three loadings, now achieving good fit. Scalar
invariance also does not hold. Partial scalar releases seven subtests, reaching acceptable fit
despite RMSEAD=.083. Next, the constraints on latent covariances (M5) lead to a serious
misfit. Adding then the constraints on latent covariances (M6) leads to minor change CFA
and Mc but RMSEAD suggests these constraints may not be acceptable. Overall this means
neither the latent covariances or variances seem to be equal across groups. A more
parsimonious version of model M6 adds an equality constraint on the information factor
means without decreasing model fit.

Table 11. Male-female differences among Blacks using Correlated Factors

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 5980 497 .952 .043 .037 .637

M1. Configural 5342 994 .961 .038 .034 .699

M2. Regression 5422 1028 .961 .037 .034 .697 .019 [.013:.025]

M3. Metric 6290 1071 .953 .040 .051 .651 .074 [.070:.079]

M3a. Partial
Metric1

5875 1068 .957 .038 .043 .674 .054 [.049:.059]

M4. Scalar 7468 1096 .943 .044 .053 .592 .130 [.124:.135]

M4a. Partial
Scalar2

6324 1089 .953 .040 .044 .650 .083 [.077:.090]

M5. Lv
covariance

6828 1104 .949 .041 .077 .625 .087 [.079:.095]

M6. Lv
var-covariance

6929 1110 .948 .042 .079 .620 .062 [.050:.075]

M7. Lv reduced 6929 1111 .948 .041 .079 .620 NaN*
1 Freed parameters (by descending order of χ2 size) are: info =~ aeronautics, spatial =~ mechanical
reasoning, info=~ social studies.



2 Freed parameters (by descending order of χ2 size) are: aeronautics~1, mechanical reasoning~1,
mechanics~1, social studies~1, theater~1, visualization in 3D~1, physical science~1.
* NaN is the result of a Chi-square that is negative or lower than 1 (model fits better). RMSEAD
therefore cannot be computed.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Table 12 contains a summary of the fit indices of the HOF model and the freed parameters.
Here again, metric invariance is strongly violated. Partial metric releases five loadings,
producing good fit. It is unclear whether this is sufficient since only ΔCFI=.005 rejects metric
invariance, according to Khojasteh & Lo’s (2015) cutoffs. Scalar invariance is also rejected.
Partial scalar releases six subtests, achieving acceptable fit although RMSEAD is close to
.08. Adding a constraint on latent variances (M5) does not worsen model fit, except for
SRMR. The Strong SH model is largely rejected. A more parsimonious version of model M5
adds a constraint on math factor means without affecting model fit (M6b).

Table 12. Male-female differences among Blacks using Higher Order Factor

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 7120 506 .942 .046 .043 .581

M1. Configural 5869 1012 .957 .040 .036 .671

M2. Regression 5951 1046 .956 .039 .037 .668 .020 [.014:.026]

M3. Metric 7194 1094 .945 .043 .064 .606 .085 [.081:.089]

M3a. Partial
Metric1

6469 1089 .952 .040 .046 .643 .056 [.052:.061]

M4. Scalar 8374 1116 .935 .046 .053 .551 .143 [.138:.149]

M4a. Partial
Scalar2

6922 1110 .948 .041 .047 .620 .076 [.069:.082]

M5. Lv variance 7009 1117 .947 .042 .065 .616 .053 [.042:.065]

M6a. Strong SH 8675 1123 .933 .047 .076 .537 .305 [.292:.317]

M6b. Weak SH 7009 1118 .947 .042 .065 .616 NaN*
1 Freed parameters (by descending order of χ2 size) are: g =~ science, info =~ aeronautics, science
=~ mechanics, g =~ english, spatial =~ mechanical reasoning.
2 Freed parameters (by descending order of χ2 size) are: mechanics~1, aeronautics~1, mechanical
reasoning~1, physical science~1, social studies~1, theater~1.
* NaN is the result of a Chi-square that is negative or lower than 1 (model fits better). RMSEAD
therefore cannot be computed.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

Table 13 contains a summary of the fit indices of the BF model and the freed parameters.
Metric invariance is strongly rejected. Partial metric achieves acceptable fit, but only after



freeing seven loadings, most of which are the subtests’ direct loadings on g. Scalar
invariance also is rejected. Partial scalar releases four subtests, achieving acceptable fit.
However, the constraint on latent variances (M5) is strongly rejected, which is an indication
that the groups use different ranges of latent abilities. A Strong SH model (M6a) fits much
worse than M5. A more parsimonious version of model M5 which adds an equality constraint
on spatial factor means fits a little worse according to CFI only but RMSEAD suggests very
good fit (M6b). The no SH model (M6c) fits worse than model M5.

Table 13. Male-female differences among Blacks using Bifactor

Model Level χ2 df CFI RMSEA SRMR Mc RMSEAD [CI]

M0. Baseline 5663 478 .954 .042 .032 .653

M1. Configural 4623 956 .967 .036 .023 .740

M2. Regression 4704 990 .967 .035 .024 .737 .020 [.014:.026]

M3. Metric 5911 1066 .957 .039 .059 .671 .063 [.060:.067]

M3a. Partial
Metric1

5251 1059 .963 .036 .042 .708 .043 [.039:.046]

M4. Scalar 6498 1086 .952 .040 .046 .641 .114 [.108:.119]

M4a. Partial
Scalar2

5690 1082 .959 .037 .042 .685 .068 [.062:.074]

M5. Lv variance 6281 1089 .954 .040 .064 .653 .173 [.162:.184]

M6a. Strong SH 9095 1095 .929 .049 .079 .518 .427 [.415:.439]

M6b. Weak SH 6294 1090 .953 .040 .064 .652 .047 [.021:.080]

M6c. No SH 6554 1091 .951 .041 .072 .638 .248 [.227:.270]
1 Freed parameters (by descending order of χ2 size) are: g =~ aeronautics, g =~ mechanical
reasoning, g =~ mechanics, spatial =~ mechanical reasoning, g =~ word functions, g =~ electronics, g
=~ social studies.
2 Freed parameters (by descending order of χ2 size) are: table reading~1, mechanical reasoning~1,
social studies~1, clerical checking~1.
Note: higher values of CFI and Mc indicate better fit, while lower values of χ2, RMSEA, RMSEAD,
SRMR indicate better fit.

3.4 The contribution of Spearman’s g

Table 14 shows the group differences in factor means expressed in standardized units,11 as
well as their standard errors, from the best fitting bifactor and best fitting higher order factor

11 Since the latent means in the reference group must be set at zero for identification, lavaan package
calculates the fully standardized estimate of the latent means in the focal group by using the focal
group’s standard deviation. Because the mean of the reference group is zero, the mean of the focal
group actually expresses the group standardized difference.



models. The Black-White g gap in the male and female groups are, respectively, 1.5 and 1.3.
The male-female g gap in the White and Black groups are, respectively, 0.85 and 0.55. The
sex gap seems large compared to earlier reports on IQ gaps, until one realizes that this
battery of tests has a strong knowledge component, especially specific knowledge. But
because the ratio of biased/unbiased subtests was relatively high, the estimates of sex
differences in factor means should be interpreted with caution. Having the means of the
factors is informative but does not tell us how well Spearman’s g explains the data.

Table 14. d gaps (with their S.E.) from the best fitting g models per group analysis

BW d (male) BW d (female) sex d (white) sex d (black)

BF HOF BF HOF BF HOF BF HOF

English – – -1.081
(.038)

– 2.816
(.032)

.971
(.005)

1.810
(.089)

.506
(.026)

Math -.326
(.045)

-.422
(.041)

– -.237
(.033)

.783
(.021)

– .808
(.104)

–

Speed – – .225
(.031)

– .544
(.008)

.457
(.007)

.281
(.048)

.285
(.034)

Information – – -.679
(.032)

-.290
(.014)

1.974
(.024)

.281
(.006)

1.500
(.110)

.145
(.025)

Science -.897
(.032)

-.685
(.024)

-.211
(.033)

– -1.740
(.016)

-.998
(.013)

-1.361
(.078)

-.803
(.058)

Spatial -.430
(.030)

-.374
(.024)

-.783
(.025)

-.516
(.016)

-.329
(.013)

-.841
(.011)

-.179
(.057)

-.466
(.036)

g -1.502
(.026)

-1.484
(.026)

-1.272
(.020)

-1.315
(.017)

-.853
(.015)

-.339
(.007)

-.554
(.052)

-.150
(.036)

Note: Negative values indicate advantage for Whites (or males).

The proportion of subtest differences due to g answers this question more directly. It can be
computed, in the case of the bifactor model, by dividing the product of the g mean difference
and subtest’s loading on g by the sum of the product of all latent mean differences and their
subtest’s loadings. This is the method used by Dolan (2000, Table 8 and Eq. 23). However,
Dolan multiplied the first-order specific factor means by the first-order loadings (i.e., the path
tracing rule) to estimate the g loadings due to employing the HOF model. In the BF model,
the calculation is easier because there are no first-order factors mediating the relationship
between g and the subtests.12 Whatever structure (BF or HOF) is used to compute the
proportions, it is important to note that they are not g-loadings. To compute the proportions,
the loadings of the focal group (Blacks or females) are used.13

13 Some loadings are different across groups, due to non-invariance, among other things, but this does
not change the result substantially.

12 Details of the analysis and calculations are provided in the supplementary file.



Table 15 provides the percentage of each subtest mean difference that is due to g as
opposed to specific factors, based on the best fitting bifactor model by subgroup. For the
Black-White groups, many subtests display a very high proportion, close to .8 or 1. The
average proportion is .90 for the male group and .73 for the female group, indicating that g is
the main source of the group differences. At first glance, it may seem puzzling that g explains
100% of the Black-White difference in some of the speed subtests in the male group, despite
their very low loadings on g but high loadings on the speed factor. This is because their
mean difference in the speed factor is zero. For the sex groups, on the other hand, the
proportions vary greatly in size. Sometimes g explains the lion’s share of some subtests’
mean differences, sometimes g explains very little. The average proportion is .43 for the sex
group among Whites and .50 for the sex group among Blacks. If SH explicitly states that g is
the main source of the group difference, it seems that even the weak SH model does not
explain well the pattern of sex differences.

Table 15. Proportions of subtest group differences due to g based on Bifactor model

Subtests BW (male) BW (female) sex (White) sex (Black)

S1 0.861 0.780 0.399 0.445

S2 1.000 0.777 0.485 0.470

S3 1.000 0.767 0.402 0.434

S4 1.000 0.847 0.674 0.550

S5 0.927 1.000 0.699 0.603

S6 0.764 0.801 0.533 0.924

S7 0.789 0.866 0.457 0.556

S8 0.752 0.704 0.296 1.000*

S9 0.613 0.831 0.344 0.419

S10 0.621 0.888 0.304 0.251

S11 1.000 0.702 0.411 0.444

S12 1.000 0.796 0.514 0.554

S13 1.000 0.806 0.465 0.404

S14 1.000 0.861 0.502 0.425

S15 1.000 0.699 0.357 0.382

S16 1.000 0.802 0.574 0.512

S19 1.000 0.539 0.219 0.384

S20 1.000 0.583 0.302 0.304



S21 1.000 0.651 0.326 0.358

S22 1.000 0.689 0.350 0.354

S23 1.000 0.686 0.369 0.349

S24 1.000 0.699 0.373 0.343

S25 0.936 0.832 0.384 0.425

S26 1.000 0.750 0.448 0.447

S28 0.639 0.664 0.405 0.872

S29 0.728 0.548 0.512 0.745

S30 0.756 0.596 0.680 0.730

S31 0.865 0.621 0.418 0.497

S32 0.959 1.000 0.534 0.637

S33 0.842 1.000 0.589 0.536

S34 0.888 0.647 0.362 0.364

S35 1.000 0.675 0.370 0.548

S36 1.000 0.462 0.209 0.239

S37 0.642 0.378 0.211 0.353

Average 0.900 0.734 0.426 0.496
*The real value was actually 1.289, because this subtest’s loading on the information factor was
negative (-.031) and non-significant (p=.068). If converted to zero instead, the proportion is 1.

Another method used to test SH is MCV. Following te Nijenhuis & van der Flier (1997),
correction for unreliability was applied to both the vector of subtests’ differences and
g-loadings. The subtest reliabilities were taken from Major et al. (2012), but these were
missing for the speed subtests. For this reason, the analysis is done assuming the reliability
of speed subtests is either .60 or .70. The subtests’ means and SDs by subgroups are
provided in the supplementary file, both in their original metric (without data transformation
and normalization) and after normalization and z-score transformed. The d gaps are
computed based on the original metric of the subtests for this analysis (the result is
unchanged when using the z-score transformed data).

The g-loadings correlate highly with Black-White d gaps but not with sex d gaps. After
correction for unreliability, the correlations (g*d) for the Black-White male, Black-White
female, male-female White, and male-female Black groups are, respectively, .79, .79, -.06,
-.12. If the reliability for speed subtests is assumed to be .70 instead of .60, the correlations
are .80, .80, -.05, -.12. Without applying correction, the correlations are .80, .81, -.03, -.09.



The d gaps and g-loadings after correction for unreliability are then plotted to detect
anomalous patterns using ggplot2. For this analysis, the d gaps are computed after the
subtests have been normalized and z-score transformed. Using the original metric of the
variables reveals one anomaly with respect to the Black-White groups: Table Reading sits
largely below the regression line (underestimated d) but not after normalization. This could
be because the distribution of this variable is extremely skewed and non-normal (i.e., its
median is 12.0 and mean is 13.05 with a non trivial portion of the students scoring around
60-70). None other subtests behave differently depending on the metric that is used.

Upon inspecting the Figures 2-5, the correlation of g with Black-White or sex difference is
somewhat affected by the speeded subtests. Removing them yield a correlation g*d of .465,
.623, -.320, -.427 for Black-White male, Black-White female, male-female White, male-female
Black, respectively, because their removal results in a much narrower distribution of
g-loadings, which negatively affects correlations. Furthermore, some subtests show a larger
(or smaller) d gap than what is expected based on their g-loadings. Mechanics and
Mechanical Reasoning are placed well above the regression line, indicating overestimation of
d, and Clerical Checking well below the regression line, indicating underestimation of d, in all
subgroup differences. These subtests are obviously poorly explained by g. This does not
mean they are necessarily biased, as MCV is not designed to detect bias. The unexplained
factors could be due to subtests’ uniqueness or cultural bias, unless psychometric bias was
already accounted for by removing the offending subtests prior to MCV test, leaving
uniquenesses (and perhaps measurement error) as the only non-g sources. Another reason
to be cautious in interpreting the source of d is that the correlation, and therefore the
direction of the regression line, depends on the inclusion of the speeded subtests.

Figure 2. Regression of standardized difference on g loadings among Black-White males



Figure 3. Regression of standardized difference on g loadings among Black-White females

Figure 4. Regression of standardized difference on g loadings among male-female Whites



Figure 5. Regression of standardized difference on g loadings among male-female Blacks

Gender differences in the subtests’ means are smaller than racial differences, with one
exception. Some science subtests, along with Mechanical Reasoning, show very large d
gaps, much larger than expected based on their g-loadings. Interestingly, MGCFA revealed
these subtests’ means as biased with respect to gender in either the White or the Black
group.

It is possible that the presence of bias could have affected the correlations. MGCFA analysis
revealed the subtests Mechanics, Physical Science, Arithmetic Reasoning and Arithmetic
Computation to be biased at the intercept level with respect to racial groups; these were
removed prior to MCV test. The correlations improved for the Black-White male and
Black-White female groups, going up to .845 and .837, respectively. So far this is consistent
with te Nijenhuis et al.’s (2016) conclusion that subtest bias could negatively affect the
correlations. The subtest Clerical Checking was also biased (against Whites) but removing it
thereafter drops the correlations to .779 and .787.

A similar procedure was done for testing gender differences. After removing all subtests with
intercept bias, the correlation is barely affected in both the White and Black groups
(regardless of whether one removes the subtest biases found in the HOF or BF model). The
exception is for the Black group when removing subtest biases based on the BF model; the
negative correlation amplifies (r=-.304) but this is simply because of the removal of two
speed subtests. In other words, there is no evidence that biases affect the correlations for the
gender differences.



4. Discussion

The present analysis replicates a pattern that is often observed in previous analyses using
MGCFA: that the Black-White cognitive gap is relatively unbiased whereas the sex cognitive
gap sometimes exhibits a high percentage of biased subtests. In the Project Talent, the
subtests’ biases often disfavor Black students whereas the biases seem to cancel out
between sex groups in all models,14 the exception being the bifactor in which all the biased
subtests disfavor Black female students. The number of biased subtests’ intercepts is small
in the Black-White sample (2 among male and 4 among female groups). The effect size in
non-invariance indicates a non-trivial bias, mostly disfavoring Blacks, but given the small
ratio of biased/unbiased tests, the total effect should not be large. It is not impossible
however, owing to lack of power due to large model size and sample unbalances, that a few
more parameters need to be released in the Black-White female group analysis (either
loadings or intercepts or both). If this is the case, the racial bias cannot be considered as
minor anymore. It is however unclear whether traditional MGCFA actually lacks sensitivity
overall or is too strict in its assumption. Some researchers recently recognized that the
assumption of exact equality rather than approximate equality makes MGCFA too strict for
many applications, which is the very reason why most studies fail to achieve scalar or strict
invariance in survey scales. Van De Schoot et al. (2015), in discussing the strength of
approximate measurement invariance (MI) methods such as the Bayesian SEM, wrote: “If
there are many small differences between the groups in terms of intercepts or factor
loadings, approximate MI seeks a balance between adherence to the requirements of MI,
making comparisons possible, and obtaining a well-fitting model (i.e., a model that is more
realistic given the data at hand).”

On the other hand, one may argue that releasing more parameters to assess their effect
sizes can reveal potential biases, especially when power is suspect (Lasker et al., 2021).
There are merits but also difficulties with this approach, since the effect sizes available have
limitations in their applications. The proposed effect sizes (SDI or MIVIs) rest on several
assumptions: that the intercept’s effect size being computed must also assume equal loading
and that the model does not contain any cross loadings. According to Nye & Drasgow (2011),
the standard formula to compute effect size does not account for cross-loadings. Another
complication outlined by Groskurth (2023) and Millsap & Olivera-Aguilar (2012) is that the
calculation of non-invariant intercepts typically assumes invariant loadings. It isn’t to say
there is no way to calculate effect sizes under these conditions, but that the interpretation is
less ambiguous in the absence of cross loadings and/or non-invariance in loadings. Because
these effect sizes were designed initially for very simple models, the effect sizes of parameter
bias reported in this study should be taken with caution.

After establishing partial invariance, SH was tested in all subgroups. This was validated in
the Black-White analyses based on two findings: 1) non-g models fit worse than g-models
and 2) the proportion of the subtests’ mean differences due to g is very large. This was not
found to be the case in the gender analyses, although the number of freed parameters
undermines group comparison in latent means a little bit. The pattern of sex differences in
latent means is worth discussing. At first glance, the large sex difference in g scores looks

14 Effect sizes are not computed for the sex groups. The conclusion that biases may cancel out is
based on the observation of their unstandardized intercepts. Their real magnitude is unknown.



suspicious, given past studies using MGCFA. One must keep in mind that this battery of tests
requires a great deal of knowledge, especially specific knowledge for some subtests. This
means that g in this battery is contaminated by a strong knowledge component, as opposed
to standard IQ tests.

MCV was applied to check the similarity of obtained results with MGCFA. The finding of a
large correlation between the Black-White d gaps and g-loadings is consistent with earlier
reports on Black adults (te Nijenhuis & Van den Hoek, 2016). It is worth noting that MCV was
not meant to measure test bias and is not a latent variable approach. Differences with
MGCFA are expected (Lasker et al., 2021). Taken individually, MGCFA is a more complete
and reliable method for testing SH as well as test bias, but it has been argued that the
consistency of MCV can be improved using meta-analytic correction for artifacts (te Nijenhuis
et al., 2019). Unlike MGCFA, the MCV has not been widely accepted due to continuous
criticism. For a current state of the debate, see te Nijenhuis et al. (2019).

While MGCFA reveals a clear superiority of the bifactor over the correlated factors model,
when using the random sampling approach, the higher order factor usually fits worse than
the correlated factors model. This ambiguous finding is important because some researchers
have suggested that if parsimony is a desirable outcome, the higher order factor model
should be preferred over the bifactor due to having more degrees of freedom. But the debate
is not settled. Conceptually the bifactor can be thought as more parsimonious than the higher
order factor model at explaining the relationship between subtests and g because it does not
require a theoretical justification for full mediation of the specific factors and does not impose
proportionality constraints on the loadings, despite the bifactor model having fewer degrees
of freedom due to introducing more parameters (Cucina & Byle, 2017; Gignac, 2008).
Perhaps more importantly, a bifactor model is consistent with Spearman’s initial
conceptualization of g as having direct influences on the measured tests (Frisby & Beaujean,
2015, p. 95).

When it comes to modeling the Spearman’s Hypothesis, one must bear in mind that even if
non-g models fit the data equally well as g models, the former cannot explain the correlations
between g-loadings and cognitive differences or the ubiquitous role of g at explaining brain
mechanisms and cognitive processes (Jensen, 1998). Regardless, it is no less important to
acknowledge the totality of the evidence by considering alternative tests of the Spearman’s
Hypothesis (Jensen, 1985). For instance, by manipulating the g saturation of composite
tests, McDaniel & Kepes (2014) found support for the hypothesis. SH is supported through
the examination of Forward and Backward Digit Span, showing a BDS Black-White gap that
is larger (d=.50) than the FDS gap (Jensen, 1998, p. 370). Perhaps the most powerful and
direct way of testing SH is by examining ECT’s task complexity. Jensen (1998, p. 391)
reported high correlation between task complexity and the magnitude of the Black-White gap
(r=.86). Although SH has been widely replicated using various strategies, misunderstanding
or misportrayal of the theory’s assumption leads to flawed study designs and ambiguous
conclusions. A few examples are provided below.

An argument can be made that a proper test of SH is not possible if cultural and cognitive
complexity covary (Helms-Lorenz et al., 2003; Malda et al., 2010). However it is cultural bias
and not cultural load which undermines group comparison. A culture loaded item or test is
biased only if the groups are differentially exposed to the specific knowledge elicited by the



test, given equal latent ability. Without establishing causality first, the argument of cultural
confound is not even valid to begin with. Yet this cultural confound is the reason put forth by
Helms-Lorenz et al. (2003) as for why they did not find a relationship between g-loadings and
group differences contrasting second-generation migrants with the majority group. te
Nijenhuis & van der Flier (2003) showed that they used a convenience sample, as reflected
in the extreme variations in their reported effect sizes, and did not evaluate test bias prior to
testing SH. By employing a representative sample, and after removing the strong bias
introduced by the Vocabulary subtest, using an extrapolated regression line technique, te
Nijenhuis & van der Flier (2003) found a positive correlation between g-loadings and group
differences. Another issue with the Helms-Lorenz et al.’s (2003) study, which hasn’t been
pointed out yet, is that cultural loading was rated by psychology students but the criteria were
not even defined. Jensen (1980, pp. 570, 637, 639-640) stated that the magnitude of cultural
loading is best defined by the rarity of words or rarity of informational content.

Not properly defining cultural loading or cognitive loading, or both, leads to serious flaws in
study designs as well. Malda et al.’s (2010) study serves as a striking example. Their
analysis may not have removed the influence of cultural bias on cultural load since item bias
detection was assessed with a sub-optimal method to detect Differential Item Functioning
(DIF), a logistic regression which is known to underestimate DIF (DeMars, 2010). As a result,
they found that cultural complexity rather than cognitive complexity explains the cognitive
gap between the Black (urban and rural Tswana) and White (urban Afrikaans) South African
groups. But their test of Spearman’s against the cultural hypothesis was highly suspect to
begin with. Instead of measuring cultural complexity by the rarity of words or content, they
measure it by the group difference in familiarity. Because it was defined as differential
exposure, cultural complexity here is an index of culture bias, not culture load. Instead of
measuring cognitive complexity by the items’ complexity within the test using a latent variable
approach, they measure it by arbitrarily ranking the complexity between tests, with memory
and attention tests assumed to be low in complexity and reasoning tests to be high in
complexity. Given such odd procedures, any inference about SH is at best ambiguous.

What if these studies were actually correct and cultural load and cognitive complexity were
correlated? A popular idea is that cultural load is necessarily undesirable and must be
reduced to zero. As te Nijenhuis & van der Flier (2003) expressed clearly, cultural loading is
unavoidable and even desirable as long as future school and work achievement may have a
high cultural loading. Removing such items and/or subtests may adversely affect the
predictive validity of the test.

A common misconception about verbal tests, often the target of criticism, is that they must
always contain a high degree of cultural content. In criticizing Jensen & McGurk (1987) study,
which found a stronger Black-White gap on nonverbal tests than verbal tests, Helms-Lorenz
et al. (2003) concluded that “An inspection of the items that were rated as least cultural, such
as verbal analogies, verbal opposites, and clock problems, suggests that at least some of the
items contain fairly strong cultural elements.” (p. 11). But as Jensen (1980) noted a long time
ago, “verbal analogies based on highly familiar words, but demanding a high level of relation
eduction are loaded on gf, whereas analogies based on abstruse or specialized words and
terms rarely encountered outside the context of formal education are loaded on gc.” (p. 234).



Even if we accept the idea that cultural and cognitive complexity are correlated, there are
multiple reasons for rejecting the hypothesis of culture loading as the source of g differences.
First, Jensen (1998, p. 89) argued that culturally loaded items such as vocabulary require a
great deal of fluid ability because most words in a person’s vocabulary are learned through
inferences of their meaning by the eduction of relations and correlates. The higher the level
of a person’s g, the fewer encounters with a word are needed to correctly infer its meaning.
Knowledge gap is a necessary outcome of a g gap rather than the opposite (Jensen, 1973,
pp. 89-90; 1980, pp. 110, 235). This proposition is fully supported by Jensen’s (1973)
observation that “An interesting difference between scholastic achievement scores and
intelligence test scores (including vocabulary) is that the latter go on increasing steadily
throughout the summer months while the children are not in school, while there is an actual
loss in achievement test scores from the beginning to the end of the summer.” (pp. 90-91). A
finding later confirmed by a meta-analytic review (Cooper et al., 1996). Second, the analysis
comparing normal-hearing with deaf people, which serves as a quasi-experimental study of
the cultural effects on IQ, reveals that only verbal IQ but not performance IQ on the Wechsler
was severely deprived as a result of social isolation and non supportive interactions (Braden,
1994; Hu, 2014). That performance IQ is perfectly intact is an indication that cultural
deprivation affects domain-specific rather than general ability. Cultural advantage does not
result in a higher g.

The great majority of the studies confirms the cross-cultural comparability of IQ tests, the
exception mainly comes from South African samples (Dolan et al., 2004; Lasker, 2021). Due
to the omnipresent force of the mass-market culture in developed countries, it is not
surprising that culture bias is rarely noticeable (Rowe et al. 1994, 1995). What is surprising is
the conclusion that IQ tests may be more biased with respect to gender than racial groups.

Attempts to reduce the racial IQ gap using alternative cognitive tests have always been
proposed (Jensen, 1973, pp. 299-301; 1980, pp. 518, 522). The most recent, but
unconvincing, attempt at reducing the cognitive gap comes from Goldstein et al. (2023). They
devised a reasoning test composed of novel tasks that do not require previously learned
language and quantitative skills. Because they found a Black-White d gap ranging between
0.35 and 0.48 across their 6 independent samples, far below the typically found d gap of
1.00, they concluded that traditional IQ tests are biased. First, they carefully ignore
measurement invariance studies. Second, traditional IQ tests were not administered
alongside to serve as benchmarks. Third, their analysis adjusted for socio-economic status
because they compare Blacks and Whites who had the same jobs (police officers, deputy
sheriffs, firefighters) within the same cities. This study reflects the traditional view that IQ
tests are invalid as long as they contain even the slightest cultural component.

The Project Talent administered aptitude tests. They serve as a proxy for cognitive tests, but
they are not cognitive tests. For instance, most of the information test items require specific
knowledge: asking who was the hero of the Odyssey, or what a female horse is called, etc.
They do not call for relation eduction. Jensen (1985) himself has been highly critical of the
Project Talent test battery: “Many of these tests are very short, relatively unreliable, and
designed to assess such narrow and highly culture-loaded content as knowledge about
domestic science, farming, fishing, hunting, and mechanics” (p. 218). Other tests, fortunately,
require inductive reasoning and the use of knowledge to find solutions to new problems, in a
way consistent with Jensen’s (1973, p. 75) idea of intelligence as being reflected by the



broad transfer of the learning in new relevant situations. Overall, this is a mixed bag. But
what the present study shows, together with previous studies on test bias in other aptitude
tests (Drasgow et al., 2010;15 Hu et al., 2019; Lasker et al., 2021), is that aptitude tests
produce similar outcomes to cognitive tests. That cross-cultural comparability and
Spearman’s g has been repeatedly confirmed for racial differences but not gender
differences.
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