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Abstract 

Scree plots are ubiquitous in applications of exploratory factor analysis (EFA) and principal 

component analysis (PCA); they are used to visualize the relative importance of different 

factors/components and display the results of selection procedures (e.g., parallel analysis). 

Because the eigenvalues shown in the scree plot indicate the amounts of variance accounted for 

by the corresponding factors/components, they tend to give a distorted picture of the relative 

importance of the factors/components with respect to the original units of the variables. 

Specifically, variances inflate the apparent relative importance of large effects and deflate that of 

small effects; as a result, traditional scree plots exaggerate the differences between larger and 

smaller factors/components, and flatten the visual representation of the smaller ones. In this brief 

note, I propose a simple solution in the form of square-root scree plots, i.e., scree plots based on 

the square root of the eigenvalues. Square-root scree plots provide a balanced display of the 

relative importance of the factors/components, and a more legible representation of the smaller 

ones. They are a useful addition to the toolkit of EFA and PCA, and may be preferable as a 

default option in most common applications. 
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The scree plot was introduced by Raymond Cattell (1966) and remains a ubiquitous 

display in exploratory factor analysis (EFA) and principal component analysis (PCA). A scree 

plot shows the eigenvalues of the factors or components, ordered from the first (largest) to the 

last (smallest; Figure 1a). Scree plots can be augmented with lines corresponding to selection 

criteria for the number of factors/components to retain, for example parallel analysis (see Lim & 

Jahng, 2019; Revelle, 2022). Since eigenvalues indicate the amounts of variance accounted for 

by the corresponding factors/components, scree plots are often used to visualize the relative 

importance of the factors/components extracted in the analysis. 

 

 

Fig. 1. (a) Traditional scree plot for the PCA of a simulated dataset. The dashed red 
line shows the results of parallel analysis, which suggests 11 reliable components. 
(b) Square-root scree plot for the same analysis.  
 

 

This use of scree plots is problematic, because explained variance is a non-intuitive and 

potentially misleading index of importance. Variances are mathematically convenient because 
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they combine additively; however, they are not expressed in the original units of the variables of 

interest—say intelligence in IQ points, or height in inches—but in squared units. Even when 

these variance units are not meaningless (as with squared IQ points), they still fail to measure the 

actual trait under consideration (e.g., square inches do not measure a person’s height). As has 

been noted multiple times in the methodological literature, using the proportion of explained 

variance as an effect size can easily lead researchers to dramatically underestimate the real-world 

importance of certain effects (e.g., Abelson, 1985; D’andrade & Dart, 1990; Funder & Ozer, 

2019).  

An important corollary is that comparing effects based on variances tends to exaggerate 

the differences among them—often by a large margin (Del Giudice, 2021; Hunter & Schmidt, 

1990). For example, consider two variables X1 and X2, which correlate .60 and .20 with variable 

Y. A given change in X1 (e.g., one standard deviation) corresponds to a change in Y that is three 

times larger than the one associated with the same change in X2. However, the variance 

explained by X1 (36%, expressed in squared units of Y) is nine times that explained by X2 (4%). 

The general point is that variances make large effects appear comparatively larger and small 

effects appear smaller; this distortion becomes more pronounced as the effects being compared 

grow more different from each other. To properly compare the “real-world” effects of two 

variables (i.e., their effects expressed in the original units of the variables) one should not 

compare proportions of variance but rather their square roots (the correlation coefficients in the 

example of X1 and X2). In a previous paper (Del Giudice, 2021), I discussed this point in detail 

and reviewed some of its implications for behavior genetics and psychometrics. 

Since the eigenvalues displayed in traditional scree plots correspond to amounts of 

variance accounted for, they produce the same kind of distortion when they are used to assess the 
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relative importance of different factors/components. For example, the first component displayed 

in Figure 1a accounts for about three times more variance than the second component 

(specifically, 40% vs. 13%), and visually dominates the scree plot. But in the original units of the 

variables, the first component explains only about 1.7 times as much as the second component 

(√3 ≈ 1.73). The third component is only one eight as important as the first with respect to the 

variance (5% vs. 40%), but about one third as important with respect to the original variables 

('1/8 ≈ 0.35). Of course, all these comparisons are more meaningful when the variables 

included in the analysis are on the same scale (e.g., standardized to unit variance). 

In addition to inflating the importance of the larger factors/components, traditional scree 

plots tend to flatten and compress the visual representation of the smaller ones. In Fig. 1a, one 

struggles to make distinctions and comparisons beyond the first few components; similarly, it is 

difficult to see what is going on in the region where the PCA solution (solid black line) intersects 

the result of parallel analysis (dashed red line). 

These limitations of the traditional scree plot have a simple solution: by replacing the 

eigenvalues with their square roots, one obtains what I will call a square-root scree plot. The 

square roots of the eigenvalues track the contribution of the factors/components in the original 

units of the variables, and offer a balanced visualization of relative importance. Figure 1b shows 

the square-root scree plot for the same analysis of Figure 1a. The new plot does not exaggerate 

the importance of the larger components, facilitates comparisons between the smaller ones, and 

displays the results of the parallel analysis in a clear and legible way.1 While the square-root 

 
1 Note that the classic Kaiser-Guttman criterion (eigenvalues > 1) is displayed in exactly the same way in traditional 
and square-root scree plots, because √1=1. This criterion has limitations that make it less than ideal, but is still very 
popular in practice. Moreover, parallel analysis of PCA tends to converge with the Kaiser-Guttman criterion as 
sample size increases (Revelle, 2022). A possible variant of the square-root scree plot would display the square roots 
of the normalized eigenvalues (i.e., eigenvalues divided by their sum, corresponding to variance proportions). Doing 
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scree plot is a straightforward, easily computed variant of the traditional scree plot, to my 

knowledge it has not been employed before in the context of EFA and PCA.2 The square-root 

scree plot represents a useful addition to the toolkit of these techniques and may be preferable as 

a default option, unless researchers have substantive reasons to be specifically interested in the 

variance accounted for by the factors/components.   
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