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Abstract 
 

Tests of selection based on population differentiation were performed on two highly            

polygenic traits important for success and quality of life: body height and educational             

attainment (EA).  

Polygenic scores (PGS) of EA and height, computed across three public genomic databases             

revealed differences between populations (1000 Genomes, HGDP, gnomAD) that matched          

the average IQ and height of ethnic groups (r ~0.9).  

A moderately strong correlation between latitude and EA PGS (r= 0.67) implies the effect of               

climate (seasonality or winter temperature) on selection for cognitive ability. The effect of             

latitude was reduced (β= 0.28) but remained significant after adding the sub-continental            

group variable to the regression model. 

The global Fst index revealed population differentiation at height and EA loci, significantly             

deviating from random SNPs. This is indicative of directional selection pressures with            

different strengths across groups. 

Substantial Linkage Disequilibrium (LD) Decay between Africans and Europeans was found           

(r= 0.6) but there was no correlation between LD decay and population differences in              

polygenic scores for EA (r= 0.015, p= 0.45), and slight inflation of height PGS difference due                

to LD decay (r= -0.04, p= 0.0315). Selecting the SNPs most robust to LD decay (r>0.8)                

resulted in larger PGS gaps for EA, but smaller for height. 

Finally, it is shown that PGS differences are more sensitive than Fst to the significance of                

GWAS loci, reflecting the major limitations of Fst as an index of selection. 

 

Keywords: Educational attainment; polygenic score; GWAS; polygenic adaptation;        
height 
 

1. Introduction 
 

1 

mailto:pifferdavide@gmail.com


Many studies over the last decade have established the highly polygenic nature of             

many human traits (Lo et al., 2015; Shi et al., 2016; Boyle et al., 2017). This discovery was                  

aided by technical advances in the science and technology of genomics, which enabled             

genome-wide association studies (GWAS) on large samples to detect thousands of variants            

with tiny effect on human traits. This genetic architecture contrasts with the classical             

Mendelian model where effects are driven by rare variants with large effect. 

Despite these advances, polygenic adaptation has proven difficult to disentangle          

because causal variants only undergo subtle changes in allele frequency. Moreover, the            

arrays used by GWAS usually tag causal variants, meaning that they only identify variants              

that are in linkage disequilibrium with the causal variant. Whilst the effect of causal variants               

is generally homogeneous across ethnic groups (Ishigaki et al., 2020), tag variants have             

decreased predictive power in populations that are ancestrally different from the GWAS            

reference sample, due to a phenomenon known as Linkage Disequilibrium decay. LD decay             

is due to recombination events that shuffle the genetic material (Vos et al., 2017). Another               

issue that affects GWAS and selection methods relying on GWAS summary statistics is             

population stratification, which can inflate signals of selection due to co-variance between            

genes and the environment.  

Methods to detect directional selection usually exploit population differentiation in          

allele frequencies (Piffer, 2013; Berg & Coop, 2014). Other methods are based on             

within-population variation: selection scans based on singleton density score (SDS) (Field et            

al., 2016) or tests that analyze the correlation between derived allele frequencies (DAF) and              

GWAS effect size and direction (Uricchio et al., 2019). 

Other tests rely on the correlation between allele frequencies and environmental variables,            

such as annual temperature or rainfall, or proxies for climate such as latitude (Limborska et               

al., 2002; Eisenberg, Kuzawa and Hayes, 2010). 

This paper will use tests relying on between-population variation and correlation with            

latitude to identify signals of polygenic adaptation on two highly polygenic traits: Educational             

attainment and height. The correlation of polygenic scores with average population trait            

(phenotype) and Qst-Fst (Whitlock & Guillaume, 2009) test are complementary approaches           

to detect polygenic selection. The correlation between polygenic scores and environmental           

variables such as latitude has a long tradition and it has become part of standard test of                 

selection packages (Berg and Coop, 2014). 

Population differentiation at education-related genetic variants has been shown by          

previous studies (Piffer, 2013; Piffer, 2015, Piffer, 2019). Recently a study found strong             

directional selection on educational attainment in Britain over the last 2k years (Stern et al.,               

2021). This trend has reversed in many countries after the industrial revolution, and             

molecular evidence for this phenomenon was provided by Kong et al. (2017) which showed              
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that in Iceland, the EA PGS has been decreasing over time because people with higher EA                

polygenic scores tend to have fewer children. 

Education is highly genetically correlated to intelligence (r>0.69), and can be used as             

a proxy for cognitive abilities (Davies et al, 2018; Hill et al., 2019; Savage et al., 2018).                 

However, other non-cognitive skills contribute to educational attainment, hence the selection           

signal might reflect selective pressure on other traits. Recently, a study found genetic             

associations with EA independent of cognitive abilities. Some traits such as extraversion,            

agreeableness and conscientiousness were positively correlated to the non-cognitive factor          

but negatively to intelligence (Demange et al., 2021).  

Unfortunately the resulting non-cognitive factor retained some variance in common          

with intelligence (although to a much smaller extent than the cognitive PGS), preventing us              

from treating the two factors separately in the population-level analysis. 

The existence of non-cognitive traits whose genetic correlation with intelligence and           

education go in the opposite direction makes it problematic to use EA as a proxy for IQ. For                  

this reason, this study will use the summary statistics from the multi-trait analysis (MTAG) of               

education with cognitive performance, highest math class completed and self-reported math           

ability (Lee et al., 2018), which likely reflect the contribution of cognitive genetics more than               

the pure EA phenotype (“Years of Education”). Indeed, the MTAG PGS explained 11-13% of              

the variance in EA and 7-10% in cognitive performance (Lee et al., 2018). 

These two traits were chosen because they are 1) socially relevant since they both              

affect success in life (academic, occupational and mating success); 2) highly polygenic and             

3) GWAS are available for very large samples. Finally, two novel measures of selection are               

introduced: 1) the correlation of GWAS allele frequencies across pairs of populations and 2)              

the ratio between allele frequency difference and mean absolute allele frequency difference. 

 

 

 

2. Methods 
 

Polygenic scores were computed using GWAS SNPs meeting the standard          

significance threshold (p< 5 x 10-8) and weighed by effect size. The inclusion criteria for               

GWAS were sample size and predictive power: the GWAS with the largest sample size and               

predictive power were used to compute polygenic scores. For education, the Lee et al.              

(2018) GWAS met these criteria: it had the highest predictive power (~9%) and largest              

sample size (1.1 million) among GWAS of education and cognition. The EA MTAG             

(henceforth, “EA3”)polygenic score was chosen because it encompassed several cognitive          

abilities and had the largest predictive power; for height, the GWAS meta-analysis            
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comprising 700,000 individuals by Yengo et al. (2018) had the largest sample size, but the               

highest predictive power (42.8%) was achieved by Chung et al. (2019), albeit with a smaller               

sample size (N= 456,837). The latter was used for computing polygenic scores, and the              

former to compute Fst distances and LD decay, because (unlike Chung et al., 2019) the               

publicly available statistics provided the necessary p-values to perform LD clumping and            

p-value thresholding.  

Polygenic scores were computed using the three largest publicly available population 

genetics datasets: 1000 Genomes (“1KG”), gnomAD (https://gnomad.broadinstitute.org/) 

and Human Genome Diversity Project/HGDP 

(ftp://ngs.sanger.ac.uk/production/hgdp/hgdp_wgs.20190516/). 
Average height for populations was obtained from Wikipedia        

(https://en.wikipedia.org/wiki/Average_human_height_by_country) and was available for 12      

populations in 1000 Genomes. Only male average height was used, because statistics for             

females are absent for many countries. For countries with more than one value, the most               

recent statistics was used. The HGDP sample included mostly tribes that were not             

represented in national height statistics for which it would be difficult to get a precise               

estimate, hence they were reported without attempting to compute the correlation with            

phenotypic height. The average height for gnomAD was obtained from National Health            

Statistics (Fryar et al., 2018) for ethnic groups in the US represented by the gnomAD               

samples (Hispanic, East Asian, European (non Finnish), African-American). The average          

height for Finns was obtained from Wikipedia. The average height of Ashkenazi Jews was              

obtained from a recent study on the genetics of height among a sample consisting mostly of                

Ashkenazi Jews (Zeevi et al., 2019). 

Latitude values for HGDP populations were obtained from Rosenberg et al. (2005) (see:             

https://rosenberglab.stanford.edu/data/rosenbergEtAl2005/rosenbergEtAl2005.coordinates.t

xt). The 1000 Genomes and gnomAD contained samples that did not overlap with HGDP,              

but these were mostly collected from non-indigenous groups. Thus, only latitude for the 53              

HGDP samples was used. 

The other two datasets (1KG and gnomAD) contained many samples (Ashkenazi,           

Amish, Utah Whites, African Americans, etc.) which were collected from non-indigenous           

groups, hence the correlation with latitude was computed only for the HGDP dataset. 

The random SNPs were matched by MAF (minor allele frequency) and LD (with a              

threshold r2=0.1) using SNPsnap (Pers, Timshel, Hirschorn, 2015). 

The absolute allele frequency difference was calculated as the mean absolute difference of             

the allele frequencies 
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Fst and allele frequencies were calculated using Plink 1.9 and polygenic scores for each              

population were computed using R (version 3.6). Code and data are available on OSF:              

https://osf.io/6dvfc/ 

 
3. Results 

Height PGS  

The polygenic scores for height were calculated using Chung et al.’s (2019) GWAS, using              

the effect size in the Lasso+CTPR meta-analysis, which provided the best predictive power.             

These PGS showed substantial inter-population variation. The highest values were obtained           

by northern Europeans (Finns, Orcadians, Northern Europeans from Utah) and the lowest by             

Native Americans (Karitiana, Surui) and Southeast Asians (Dai, Vietnam).  

There was a weak, positive correlation (r= 0.321) between height PGS and latitude (Fig. 1).  

 

Figure 1. Scatterplot (Height PGS x Latitude): HGDP populations. 
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The height PGS in the 1000 Genomes (Figure 2) showed higher scores for Europeans and               

Africans, and lower for Latin Americans and East Asians. 

Figure 2. Height PGS: 1000 Genomes 

 

 
 

The PGS had a strong correlation with average population height (r= 0.923) (Fig. 3). 

 
Figure 3. Scatterplot (Height PGS x average height). 
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In the gnomAD dataset, the correlation between height and PGS was 0.949 (Fig 4). 

 

Figure 4. Scatterplot (Height x PGS): gnomAD. 
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Education 
 

Among the HGDP populations, there was a positive correlation (r= 0.675) between EA3 PGS              

and latitude (Fig. 5).  

HGDP 

Figure 5. Scatterplot (EA3 PGS x Latitude): HGDP populations. 

 

 

East Asian ethnic groups had positive residuals, suggesting the presence of           

superpopulation-specific factors. Hence, a multiple linear regression was run, adding          

sub-continent as a categorical variable. The standardized coefficients are shown in table 1             

with Africans (omitted) as the reference level. 

Table 1. Multiple regression (PGS ~ Latitude + superpopulation): standardized          
coefficients. 
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Variable Beta S.E. p 

Latitude 0.28 0.11 0.017 



 

 

 

 

 
 
Monte Carlo simulation 

 

1000 random polygenic scores were generated to compute the null distribution of correlation             

coefficients. The correlation between the clumped EA3 PGS and latitude (significantly           

deviated from the null (Z= 3.29, p= 0.0009). 

 

Figure 6. Density plot (correlation with latitude). 
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Amerindian 0.52 0.30 0.094 

C. Asian 1.33 0.28 2.23*10-5 

East Asian 1.97 0.26 1.98*10-9 

European 1.29 0.35 0.0006 

Native American 0.01 0.53 0.979 

Oceanian 0.96 0.40 0.020 

Middle Eastern 1.19 0.36 0.002 



 
 

 

 

1000 Genomes 

 

The EA PGS in the 1000 Genomes (Figure 7) showed higher scores for East Asians and                

Europeans, and lower for Latin Americans and Africans. 
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Figure 7. EA3 PGS: 1000 Genomes. 

 

 

 
Among the 1000 Genomes populations, the correlation between EA3 PGS and average IQ             

was r= 0.903 (Fig. 8). 

 

Figure 8. Scatterplot (EA3 PGS x IQ): 1000 Genomes. 
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gnomAD 

 
The correlation between IQ and EA3 PGS was r= 0.985 (figure 9). 

 
Figure 9. Scatterplot (EA3 PGS x IQ): gnomAD. 
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Correlation between height and education (PGS and average height) 

 

The population-level correlation between EA3 and height PGS was close to 0 (r= 0.02,              

-0.304, 0.03 in gnomAD, 1000 Genomes and HGDP, respectively). 

 

Global Fst 
 

A version of the Qst-Fst test, known as Fst enrichment test (Guo et al., 2018) was                

used to detect divergent selection. A more powerful version is used here, which avoids the               

issue of multiple comparisons found in pairwise tests: global Qst-Fst. The trait-associated            

SNPs were matched (after LD clumping) to random SNPs stratified by MAF and not in close                

LD (r< 0.1). This process was repeated 1000 times to generate a distribution of mean Fst                

under neutrality. 

The GWAS by Yengo et al. (2018) was used to compute Fst values for height-associated               

SNPs because the Chung et al. (2019) GWAS summary statistics lacked the p value needed               

to perform LD clumping.  

In 1KG, the height PGS had higher average Fst than random SNPs,significantly deviating             

from Fst values of random PGS (Fig. 10). 

Figure 10. Global Fst for height SNPs and random SNPs. 1000 Genomes 
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A similar deviation from random SNPs was observed in the HGDP dataset (Fig. 11). 

Figure 11. Global Fst for height SNPs and random SNPs. HGDP 
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The global Fst enrichment test yielded positive results for education too (Fig. 12 and 13). 

Figure 12. Global Fst for EA3 SNPs and random SNPs. 1000 Genomes 

 

Figure 13. Global Fst for EA3 SNPs and random SNPs. HGDP 
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The Fst values for random and GWAS SNPs and the Z scores + empirical p values are                 

reported in table 2. 

 

Table 2. Fst, Z score and p values for height Fst enrichment test. 

 

 

Controlling for LD decay 

The SNPs that reached genome-wide significance (P< 5 × 10-8) in the largest GWAS              

of educational attainment (Lee et al., 2018) were selected. Those with minor allele frequency              

(MAF) <0.01 in 1KG database among Europeans (CEU) and Africans (YRI) were removed.             

There were 2,596 SNPs satisfying these criteria. To explore the different LD patterns across              

populations, the SNPs were uploaded to LDlink, and all variants -/+ 500 Kb of the query                

variant with a pairwise R2 value greater than 0.01 were downloaded using CEU and YRI as                

reference populations. There were 4,696,863 and 5,739,447 variants for CEU and YRI,            

respectively. The two files were merged and 1,680,781 overlapping SNPs were retained.  

For each query variant, the correlation between the pairwise R2 values for CEU and              

YRI was computed. The correlation coefficient was used as an index of differential LD decay               

across CEU and YRI relative to the query variant. That is, the higher the correlation between                

the CEU and YRI R2 values, the lower the amount of trans-ethnic LD decay.  

For  each SNP, the PGS for CEU and YRI was computed, as well as the pairwise Fst.  
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 Fst GWAS Fst random Z p 

Height 1KG 0.086 0.076 9.04 0.001 

Height HGDP 0.089 0.084 3.679 0.0009 

EA3 1KG 0.080 0.076 3.11 0.002 

EA3 HGDP 0.093 0.085 7.945 0.0009 



The average correlation coefficient between the CEU and YRI R2 values across the 2596              

SNPs was r=0.608. This shows the presence of a moderate amount of LD decay. 

There was a statistically significant PGS difference between CEU and YRI. Welch Two             

Sample t-test: means: 50.312% - 47.995% respectively, t= 3.134, 95% C.I 0.008 - 0.037, p=               

0.001. 

There was no correlation between LD decay and the CEU-YRI PGS difference (r= 0.015, p=               

0.451) (Fig. 14), meaning that SNPs that are more robust to LD decay have similar allele                

frequency differences between Africans and Europeans. 

However, after selecting the SNPs with low LD decay (r> 0.8), the difference increased from               

2.32% to 2.58%. With even lower LD decay (r> 0.9), the difference became larger (3.46%). 

 

Figure 14. Association between LD decay and CEU-YRI difference in EA polygenic            
score. 

 

 

Similar results were obtained for Chinese (CHB) and CEU, although there was a             

non-significant trend towards SNPs with low LD decay to show larger PGS differences (r=              
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0.022, p= 0.283. Fig. 15). The overall amount of LD decay was smaller than for CEU-YRI (r=                 

0.728). After selecting the SNPs with low LD decay (r> 0.8), the difference increased from               

1.36% to 1.56% but it increased to 3.8% with even lower LD decay (r>0.9) 

 

 

Figure 15. Association between LD decay and CHB-CEU difference in EA           
polygenic score. 

 

The same analysis was performed on the height significant SNPs. After filtering for             

MAF (>0.01) there were 2762 SNPs, and 1,693,394 variants in LD within the 500 Kb               

window. 

The average correlation between the pairwise R2 values of CEU and YRI was r= 0.63. The                

polygenic score difference was 0.67 % (50.02 % vs 49.33%). There was a significantly              

negative correlation between (lack of) LD decay and PGS difference (r= -0.0409, p= 0.0315).              

This can be seen from the scatterplot in Fig. 16. 

Figure 16. Association between LD decay and CEU-YRI difference in Height polygenic            
score. 
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After selecting the SNPs with low amount of LD decay (r>0.8), the PGS difference was               

reduced to 0.53%. With even lower LD decay (r>0.9), the difference became negative             

(-2.55%), with YRI showing higher scores. 

A similar pattern was found for the CHB-CEU pair. There was a marginally significant              

negative correlation between (lack of) LD decay and PGS difference (r= -0.038, p= 0.055).              

The degree of LD decay was lower than for CEU-YRI (r=0.742) and the PGS difference was                

1.17 %.  This difference decreased to 0.84% with LD > 0.8, and to 0.3% with LD >0.9. 

 

Cross-population LD decay 

An interesting question is whether LD decays pattern change across populations: do the             

SNPs that are less subject to LD decay between two populations, tend to show lower LD                

decay between other pairs of populations? 

The correlation between the LD decay across SNPs for CEU-YRI and CEU-CHB (using the              

EA SNPs) was 0.3, implying a weak homogeneity in LD decay patterns across different              

population pairs. This finding makes it difficult to select SNPs that are robust to LD decay                
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across several ethnic groups. For example, there were only 234 SNPs that had low LD               

decay (r>0.8) in both the CEU-YRI and CEU-CHB pair.  

However, it is possible to compute for each pair, the PGS deviation from the              

reference population after taking into account LD decay. To do this, the reference population              

(CEU) score is constrained to 0, and each population’s score is represented by the deviation               

from 0. The deviation score can be calculated either using the SNPs in low LD (i.e. r>0.8) for                  

each population, or by computing the polygenic score for each SNP weighted by its LD               

decay coefficient. Table 3 reports the LD-decay weighted PGS for 2 populations. Since             

computing LD decay requires long computation/server time, this analysis was limited to a             

few populations. 

Table 3. LD-decay weighted PGS (CEU set to 0). 

 

 

 

Correlation between allele LD decay, Fst and allele frequency differences 

Fst is a measure of allele frequency differences. However, unlike polygenic scores, it             

is non-directional, that is, it is “agnostic” about the allele’s direction of effect. Hence, Fst               

suffers from loss of information compared to polygenic scores. Indeed, it was almost             

perfectly correlated (r= 0.97) to the absolute allele frequency difference (AFD, absolute value             

of the difference between population frequencies ) (Fig. 17), but had zero correlation with the               

polygenic score difference. Fst and AFD were also negatively correlated to (lack of) LD              

decay, that is SNPs with higher LD decay had higher Fst values. 

 

Figure 17. Correlation matrix (LD decay, PGS difference (“delta_raw”, “delta”) Fst           
(“FST) and absolute allele frequency difference (“abs_delta”, “abs_delta_raw”). 
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 CHB YRI 

EA3 0.0108 -0.0148 

Height -0.0928 -0.0024 



 

The results were almost identical when using LD decay across European and East             

Asians (CEU - CHB). However, the extent of LD decay between CEU and CHB was lower                

than between CEU and YRI (r= 0.727 and 0.608, respectively; t= 22.043, p < 2.2e-16). 

 

PGS difference/Fst as signal of selection 

If the polygenic score difference between populations is more sensitive to selection            

than Fst or AFD, the average ratio of PGS difference to Fst across SNPs should be higher                 

for GWAS SNPs under selection than for less selected traits. Since Fst is nearly equivalent               

to the absolute allele frequency difference, it is a mixture of allele frequency shifts due to drift                 

and to directional selection but it is not possible to disentangle them. Conversely, the PGS               

difference is more representative of selection pressure. Hence, the AFD/PGS difference ratio            

could be a useful indicator of selection pressure on a trait. The PGS difference, AFD and                

their ratios for European-Chinese and European-African pairs are reported in table4.  

Table 4. GWAS significant SNPs: PGS difference, AFD, PGS difference/AFD. 
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Simulation with quasi-random GWAS SNPs 

The EA GWAS SNPs with p value >0.95 (N= 2331) and MAF> 0.01 were used to                

compute the PGS delta, the AFD and the correlation with LD Decay. A prediction of the                

polygenic selection model is that the PGS delta and the PGS delta/absolute delta will be               

lower than in the GWAS significant SNPs. 

The polygenic scores were close to the theoretically expected value of 50% (CEU=             

0.4965 and YRI= 0.4997) and the difference was 0.3%. The AFD (0.12) was almost 2 times                

lower than in the GWAS significant SNPs, and the raw PGS delta/AFD ratio was ~4.5 times                

smaller (0.0259). The lower AFD (Fst) difference is due to the MAF being lower in the less                 

GWAS significant SNPs (0.184 vs 0.311). Indeed, Fst is mathematically dependent on MAF,             

and has lower values with lower MAF (Jakobsson, Edge & Rosenberg, 2013). 

 

Difference in correlation coefficient between GWAS significant and quasi-random SNPs 

Another metric to represent similarity in allele frequencies between a population pair            

is the correlation coefficient. Unlike the Fst, the correlation coefficient is sensitive to the sign               

of the difference between each pair of observations. In other words, it represents not only               

the strength of the relationship between two variables (or lack thereof) such as Fst or the                

absolute allele frequency difference; in fact, it is also an expression of the direction of such a                 

relationship because it can acquire positive and negative values. 

22 

 Raw PGS  
delta  

AFD Raw PGS delta/AFD  

CEU-CHB (EA3) 
-0.0126 

 

 0.1759 0.0715 

CEU-YRI (EA3) 
0.0231 0.2026 0.1143 

CEU - CHB (Height) 
0.0148 0.1789 0.082 

CEU-YRI (Height) 
0.0067 0.2 0.0335 



Therefore, directional (divergent) selection on a population pair should depress the           

correlation coefficient between the (same) alleles in the two populations. A prediction of this              

model is that the correlation between the allele frequencies of a pair of populations will be                

lower for GWAS significant SNPs than for less significant (or random) SNPs. 

Indeed, the correlation between the YRI and CEU EA GWAS significant SNPs was r= 0.592               

(95% C.I.= 0.566/0.616), and r= 0.894 (95% C.I.= 0.885/0.901) for the quasi-random SNPs. 

The partial correlation of the population frequencies controlling for LD decay was nearly             

identical, indicating that LD decay does not mediate the correlation. 

The height significant SNPs had similar correlation between CEU and YRI (r= 0.612) and              

CEU-CHS (r= 0.673). 

Overall, the correlations for the GWAS significant SNPs across populations were lower than             

for quasi-random SNPs, suggesting the presence of divergent selection at these loci. 

Random SNPs 

1000 sets of random SNPs, matched for LD score and MAF, were generated using              

SNPSNAP. To simulate a GWAS, the status of the effect allele was assigned at random for                

each SNP. The average correlation between the CEU and YRI allele frequencies over 1000              

sets was 0.814. 

Individual PGS 

Polygenic scores were computed for each individual in 1000 Genomes for Europeans            

and Africans. The scores were standardized (Z-transformed), and 0 represents the mean of             

the entire sample. 

The individual polygenic scores differed by 1.7 SDs across the two groups (t =              

-20.902, df = 152.74, p-value < 2.2e-16). The PGS were calculated for all the populations in                

the European and African 1000 Genomes groups. Most of the variation was between             

continents, with little overlap, but considerable overlap among populations from the same            

continental group (Fig. 18). 

Figure 18. Individual EA3 polygenic scores by population. 
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It is possible to quantify the amount of variance within and between groups using              

ANOVA. One-way ANOVA was run with the PGS as the dependent variable, and population              

(CEU and YRI) as the independent variable. The F statistic represents the ratio of the               

variance between groups and within groups. A value higher than 1 implies that the variance               

between groups is larger than the variance within groups. Welch’s one-way ANOVA was             

performed on CEU and YRI to account for different variance between groups. The F-statistic              

was 141.47 (p< 2.2 *10 ̂-16).  

 
 
Discussion 
 

Height and education-associated SNPs were both highly differentiated across         

populations, as shown by the global Fst enrichment test and polygenic scores. These             

differences matched differences in average trait (i.e. height and education), reaching           

correlations ~ 0.9 with average population IQ and height (Figures 3, 4, 6, 8,9), implying that                

selection pressure after the out of Africa dispersal acted with different strength on different              

populations. The results were robust across different datasets (gnomAD, 1000 Genomes           

and HGDP), yielding more credibility to the findings. The lack of a correlation between LD               
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decay and population differences in polygenic scores (Fig. 14) suggests that low p value EA               

GWAS SNPs have a causal effect on the phenotype or that they are closely tagging causal                

variants (i.e. high LD). Another interpretation is that the tag variants represent random noise              

which does not bias the population means in one direction. However, if this was the case for                 

all tag variants, the average allele frequency for both populations would be around 50% (i.e.               

see the quasi-random SNPs), and there would not be a significant difference. Indeed, the              

SNPs with low LD decay (r> 0.9) had larger CEU-YRI frequency difference than the others               

(3.5 % vs 2.3%), implying that the SNPs with most signal (and least noise) have larger                

frequency differences between populations. 

For height, LD decay had a small but significant effect on the PGS difference, so that                

the PGS difference computed using SNPs in low LD decay (r> 0.8) was slightly reduced               

(from 0.67% to 0.53%). The SNPs with even lower LD decay (r> 0.9) produced a reversal of                 

the difference, as Yorubans had higher PGS than CEU. This result must be interpreted with               

caution because it involves a small subset of SNPs. In this case, LD decay produces a small                 

bias, inflating the European (or deflating the African) polygenic score.  

Another way to interpret these findings is that the PGS differences between            

populations are driven by a subset of variants with very low LD decay (r> 0.8), whereas the                 

majority of the variants add mostly noise which may or may not inflate the frequency               

differences. A detailed description of this phenomenon, however, is beyond the scope of this              

paper. 

There was a lot of heterogeneity in LD decay patterns across populations (r= 0.3 for               

CEU-YRI and CEU-CHB with the EA GWAS), Hence, to increase polygenic score accuracy             

it is advisable to compute PGS differences selecting SNPs that have low LD decay for each                

specific pair of populations because the number of SNPs that are robust to LD decay across                

all populations is very small. 

Climate is an environmental factor that might have influenced polygenic adaptation           

for education, via selection for enhanced cognitive ability or life-history traits. Indeed, a             

positive correlation (r= 0.68) between education PGS and latitude was found (Fig. 5). A              

simulation using random SNPs matched for minor allele frequency, showed that this result             

would be highly unlikely under a model of random SNPs with similar minor allele frequency               

(p= 0.0009) (Fig.6). Remarkably, the height PGS had a much weaker correlation (r= 0.3)              

with latitude (Fig. 1), despite Bergmann’s rule predicting cold-climate selection for larger            

sized animals. However, this mirrors findings of a weak positive relationship between height             

and latitude in human populations (Gustafsson & Lindenfors, 2009). 

Ethnic groups of East Asian origin had large positive residuals, that is to say their               

polygenic scores for EA were higher than predicted by the line of best fit when using latitude                 

in a simple linear regression model. After adding the “sub-continent” variable to the             
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regression model, there was a significant improvement in model fit (p= 2.64 * 10-7), with the                

variance explained (Adj. R2) increasing from 44.4% to 75.8%. On the other hand, the effect               

of latitude on EA PGS was more than halved (Beta= 0.67 to 0.28). This suggests the                

presence of selective pressures (or introgression events) independent of latitude and shared            

within sub-continents. An alternative explanation is that the current geographical location of            

some groups doesn’t reflect their historical origin. For example, a positive residual for East              

Asian populations could be due to an origin at higher latitudes followed by a relatively recent                

move southwards. 

Recently, Stern et al. (2021) found evidence for directional selection on EA3 PGS.             

The effect was partly mediated by EA3’s correlation to a variable measuring skin             

pigmentation (“sunburning ability”). The authors found that after accounting for selection           

pressure on skin pigmentation, the selection signal on EA3 was attenuated. Hence, a large              

share of the selection pressure on EA3 was due to correlated response with another trait. In                

light of the strong correlation with latitude,an alternative explanation to directional selection            

on EA3 being a by-product of selection on pigmentation, is that climatic factors could              

account for the genetic correlation between EA3 and skin pigmentation. There are different             

mechanisms that can potentially drive a correlated response to selection between two or             

more traits: a) passive, meaning they are genetically linked (i.e. pleiotropy) but only one trait               

is beneficial for passing on an organism's genes and the other traits “hitch-hike” because              

they are influenced by the same genes or genetic variants in strong linkage with the selected                

trait, (b) the same environment selects for multiple traits at the same time, or (c) different                

environmental selection pressures happen to act simultaneously on multiple traits 

The present study also shows the empirical equivalence of Fst and absolute allele             

frequency difference (r= 0.97). An advantage of using polygenic scores compared to the Fst              

or absolute allele frequency difference is that it is directional, that is, that each allele’s effect                

is taken into account, whether it is a risk allele or not, or whether it increases or decreases a                   

phenotype. On the contrary, Fst and AFD are non-directional, so the mean Fst or AFD               

across many genetic variants is independent of alleles with positive effects being            

overrepresented in a population compared to another one. Hence, Fst or AFD are more              

representative of drift than of selection. Conversely, the polygenic score difference is more             

indicative of directional selection because it is dependent on the average direction of             

selection across many genetic variants. Hence, the ratio between the latter and the mean              

Fst or AFD is a measure of directional selection net of the effects of drift. Accordingly, there                 

was a much stronger reduction in PGS difference than Fst in a set of low significance GWAS                 

SNPs (p>0.95) , which putatively contain mostly noise and very little selection signal. They              

had lower (2x) Fst, but much lower (7x) PGS difference, resulting in a 4.5-fold reduction in                

PGS difference/AFD ratio (table 3). 
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Another way to represent the coefficient of directional selection is to compute the             

correlation between the frequencies of (GWAS significant) alleles with positive effect among            

a pair of populations; one can compare them to non-significant (almost random) SNPs, or a               

set of random SNPs matched for MAF. The advantage of using correlation of allele              

frequency across population pairs is that it is intuitive and, unlike Fst, sensitive to the               

direction of selection on each genetic variant as well as its strength. Divergent selection will               

make allele frequencies shift in different directions among populations. Indeed, the GWAS            

significant SNPs for height and EA had much weaker correlation of allele frequencies (r~              

0.6) compared to non-significant and random SNPs (r>0.8). 

Allele frequencies computed by group are traditionally used for tests of selection.            

This allows researchers to identify the genetic variants that have the strongest selection             

signals. However, another way to represent allele frequency differences between groups is            

with individual PGS: this gives a better idea of how much variation is partitioned between               

individuals and between groups. An in-depth analysis of this topic is not within the scope of                

this paper, but it can be seen in Fig. 18 that for polygenic scores of traits under strong                  

polygenic selection, there is much more dispersion between continental groups than           

between individuals. That is, there is little overlap in the individual polygenic scores across              

continental groups (Africans and Europeans), as they deviate by more than 1.5 SDs. On the               

other hand, populations within the same continent have relatively small differences. This            

suggests that genetic differences in cognitive abilities and life history are due to factors              

(cultural, climatic, or archaic introgression) that are fairly homogeneous within          

(sub-)continents. However, selection pressures within super populations do exist, as implied           

by the existence of specific groups with significantly higher scores compared to their             

reference super populations (e.g. Ashkenazi Jews, Finns) and the persistence of the effect             

of latitude after taking into account the super population variable. 

Finally, the next generation of GWAS studies are increasingly looking at trans-ethnic            

samples to improve polygenic predictions in different populations. As GWAS on different            

populations are available, future studies should investigate whether the SNPs with lower LD             

decay found using European-based GWAS have higher predictive accuracy in          

non-European populations. 
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