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Abstract
A dataset of socioeconomic, demographic and geographic data for US counties (N≈3,100) was created 
by merging data from several sources. A suitable subset of 28 socioeconomic indicators was chosen for 
analysis. Factor analysis revealed a clear general socioeconomic factor (S factor) which was stable 
across extraction methods and different samples of indicators (absolute split-half sampling reliability 
= .85).

Self-identified race/ethnicity (SIRE) population percentages were strongly, but non-linearly, related to 
cognitive ability and S. In general, the effect of White% and Asian% were positive, while those for 
Black%, Hispanic% and Amerindian% were negative. The effect was unclear for Other/mixed%. The 
best model consisted of White%, Black%, Asian% and Amerindian% and explained 41/43% of the 
variance in cognitive ability/S among counties.

SIRE homogeneity had a non-linear relationship to S, both with and without taking into account the 
effects of SIRE variables. Overall, the effect was slightly negative due to low S, high White% areas.

Geospatial (latitude, longitude, and elevation) and climatological (temperature, precipitation) predictors
were tested in models. In linear regression, they had little incremental validity. However, there was 
evidence of non-linear relationships. When models were fitted that allowed for non-linear effects of the
environmental predictors, they were able to add a moderate amount of incremental validity. LASSO 
regression, however, suggested that much of this predictive validity was due to overfitting. 
Furthermore, it was difficult to make causal sense of the results.

Spatial patterns in the data were examined using multiple methods, all of which indicated strong spatial
autocorrelation for cognitive ability, S and SIRE (k nearest spatial neighbor regression [KNSNR] 
correlations of .62 to .89). Model residuals were also spatially autocorrelated, and for this reason the 
models were re-fit controlling for spatial autocorrelation using KNSNR-based residuals and spatial 
local regression. The results indicated that the effects of SIREs were not due to spatially autocorrelated 
confounds except possibly for Black% which was about 50% weaker in the controlled analyses.

Pseudo-multilevel analyses of both the factor structure of S and the SIRE predictive model showed 
results consistent with the main analyses. Specifically, the factor structure was similar across levels of 
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analysis (states and counties) and within states. Furthermore, the SIRE predictors had similar betas 
when examined within each state compared to when analyzed across all states.

It was tested whether the relationship between SIREs and S was mediated by cognitive ability. Several 
methods were used to examine this question and the results were mixed, but generally in line with a 
partial mediation model.

Jensen's method (method of correlated vectors) was used to examine whether the observed relationship 
between cognitive ability and S scores was plausibly due to the latent S factor. This was strongly 
supported (r = .91, Nindicators=28). Similarly, it was examined whether the relationship between SIREs 
and S scores was plausibly due to the latent S factor. This did not appear to be the case.

Key words: USA, United States, inequality, cognitive ability, intelligence, IQ, NAEP, S factor, general 
socioeconomic factor, race, SIRE, spatial autocorrelation, spatial statistics, multilevel, temperature, 
latitude, longitude, precipitation, elevation, LASSO regression, Jensen's method, method of correlated 
vectors

1. Introduction

Previous studies have examined the relationship between the composition of political units – in terms 
of self-identified race/ethnicity (SIRE) or other demographic variables – cognitive ability and 
socioeconomic outcomes (Beaver & Wright, 2011; Fuerst & Kirkegaard, 2016a, 2016b, Kirkegaard, 
2015, 2015, 2016; Kirkegaard & Fuerst, 2016; Pesta & Poznanski, 2014; Putterman & Weil, 2010). In 
general, it has been found that demographic composition is a moderate to strong predictor of cognitive 
ability and socioeconomic outcomes. Perhaps the most comprehensive study is that of Fuerst and 
Kirkegaard (2016a) who estimated the genomic ancestry of every country in the Americas as well as 
the first-order administrative divisions2 of the US, Mexico, Colombia and Brazil. European ancestry 
correlated .71 and .64 with estimated cognitive ability and the general socioeconomic factor (S factor), 
respectively. Studies that have examined administrative divisions within countries have usually, but not
always, examined the first-order divisions. One exception is Beaver and Wright (2011) which examined
counties in the US (second-order administrative divisions). Their study did not focus on the 
demographic correlations, but reported that African American% correlated with cognitive ability and S 
at -.43 and .77 (corrected for attenuation, .72 before).3 They did not attempt to combine multiple 
demographic predictors nor did they examine geospatial or geographic predictors.

The purpose of this study is to build upon the earlier analyses by examining the structure of the S factor
and its demographic and environmental correlates at the county-level in the US.

2 These have different names, but are often called states, regions or the like.

3 S was not extracted in the study. However, using matrix algebra it is possible to extract an S factor and calculate the 
correlation of African American% to this factor. See Revelle (2015a) for the method. Thanks to David Condon for help 
with this task. The correlation between cognitive ability and S was .64 (corrected for attenuation, .60 before). To extract 
the S factor, I used all the non-composite S variables (details can be found in the beaver.R file).



2. Data

To analyze inequality and correlates among US counties, several datasets were combined:

1. Measure of America's county data covering 2009-2010.
http://www.measureofamerica.org/download-agreement/

2. Countyhealthrankings.org's health data for 2014. 
http://www.countyhealthrankings.org/rankings/data

3. Factfinder's geographic dataset for counties for 2010.
http://factfinder.census.gov/bkmk/table/1.0/en/DEC/10_SF1/G001/0100000US.05000.003

4. Factfinder's age and gender dataset for counties for 2010.
http://factfinder.census.gov/bkmk/table/1.0/en/ACS/10_5YR/S0101/0100000US.05000.003

5. NOAA 1980-2010 normals (climate data). Average annual data for the last 30 years.
http://www.ncdc.noaa.gov/cdo-web/datatools/normals

6. School-district data from George W. Bush Institute Global Report Card.
http://globalreportcard.org/about.html

The dataset first contains the population proportions by SIRE as well as a number of socioeconomic 
variables. The second contains a large number of health-related variables as well as other 
socioeconomic variables. The third contains geographic information for the counties (latitude and 
longitude) which was needed for the spatial analysis and for the environmental models. The fourth 
contains very detailed population data, but was chosen because it included a median age variable which
would otherwise have had to be estimated from age band variables.

The fifth dataset contains climatological data (precipitation, mean/min/max temperature) and other data
(including geolocation) for weather stations in the US (N ≈ 8400). These data are publicly available at 
the listed website, but not in a format that is easy to work with. To overcome this, I had to download 
the data automatically using a scraper script.4 Each station was then linked to the nearest county using 
distance calculated from the geolocation variables, and the data were averaged across stations for each 
county. This resulted in most counties having climatological data available (N=2914). This is almost 
the same method as that employed by Deryugina and Hsiang (2014).

The sixth dataset contains scholastic achievement (reading and math), student expenditure, SIRE 
composition, geolocation (latitude and longitude) and other data for school-districts. The achievement 
scores were given in national centiles, which were converted to Z-scores. The dataset contains 
achievement scores for 2004-2009, but because the year-to-year correlations were near perfect (.99), 
only the 2009 data were used in this study.

Together, the datasets contain hundreds of variables, many of which are of a socioeconomic nature. To 
extract an S factor, it is necessary to choose a subset of these for analysis. I chose 31 variables based on
three principles: 1) it must be an important socioeconomic outcome, 2) it must not be strongly 
dependent on local geography, and 3) the overall balance of variables should not be strongly skewed 

4 Details of the scraping can be found at http://emilkirkegaard.dk/en/?p=5904.
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towards a particular domain. Others would likely have chosen somewhat different variables. The effect 
of the choice of indicators is examined in Section 3.5.

Unless otherwise noted, all analyses were weighted using the total population in the county if 
technically possible.

3. S factor analysis

3.1. Missing values and imputation

For the purpose of extracting an S factor, there cannot be any missing data, so cases with missing data 
must either be excluded or have their missing data imputed. The distribution of missing data is shown 
in Figure 1.

Only .3% of cases had more than 10 missing datapoints. One could perhaps impute the data for the 
cases with up to 20 missing datapoints, but these cases would have needed to have 67% of their data 
imputed. Instead, I excluded cases with more than 10 missing datapoints. The missing data for the 
remaining cases (N=3127) were imputed using the irmi function from the VIM package for R with no 
noise component (Templ, Alfons, Kowarik, & Prantner, 2015). The function uses robust methods so 
that the imputed values are sensible even in the case of outliers (Templ, Kowarik, & Filzmoser, 2011).

3.2. Redundancy analysis

Datasets of socioeconomic variables often contain variables that are perfectly related to each other, 
such as proportion of high school graduates and proportion of non-high school graduates. Including 
both variables can cause problems and in effect give double weight to one aspect of inequality. To 
counteract this, an algorithm was used that excludes variables until no pair of variables correlate 
(positively or negatively) above a specified cutoff (Kirkegaard, In review). The cutoff used in all 
previous S factor studies is .90 which was also used in this study. This resulted in 3 variables being 

Figure 1: Histogram of missing data by case.



excluded: 2 educational attainment variables out of 4 initial, and 1 poverty variable out of 4 initial.5

3.3. Extraction stability across methods

There are multiple methods to estimate factor loadings and to calculate factor scores from loadings. 
Sometimes, the results differ dramatically between these. If researchers do not examine whether the 
results are stable across factor extraction and scoring methods, they may be misled (Kirkegaard, In 
review). To guard against this, I extracted the first factor using all combinations of factor extraction and
factor scoring methods available in the fa function in the psych package for R (Revelle, 2015b). After 
this, the factor scores were correlated to examine stability. The scores were very stable across methods 
with a mean correlation of 1.00.

3.4. Primary factor analyses

There are three aspects of extraction that were not already covered. I treat these as parameters and run 
the analyses for all possible parameter values (23 = 8 analyses in total).

First, one can extract the factor using weighted or unweighted analysis. When one uses weights, a 
matrix of weighted correlations is used as the basis of the analysis whereas normally one would use 
unweighted correlations.

Second, whether to use interval or rank-ordered data. Sometimes, variables have very non-normal 
distributions or non-linear relationships to other variables, both of which violate the assumptions 
behind correlations and hence factor analysis (the data must be multivariate normal; (Everitt & 
Hothorn, 2011)). One can counteract this to some degree by first converting the data to rank-ordered 
form. This loses some information because the distances between datapoints are set to be equal. 

Third, whether to correct the variables for age. There are fairly large differences in median age between
the counties. Both age and cohort (which are confounded in cross-sectional data) are known to be 
related to some variables such as educational attainment. One can attempt to control for this by 
regressing out the effect of age. Since I expected that the age ~ indicator relationships may be non-
linear, I used local regression (LOESS, (James, Witten, Hastie, & Tibshirani, 2013)), which is a kind of 
moving average function capable of capturing non-linear relationships. A model for each S indicator 
was fitted with the S indicator as the outcome variable and with median age as the predictor. The 
residuals of these models were then saved.

Figure 2 shows the factor loadings across the 8 analyses.

5 The excluded variables were: At.Least.High.School.Diploma (reverse coded version of Less.Than.High.School, 
r=-.993), Child.Poverty.living.in.families.below.the.poverty.line (redundant with 
Poverty.Rate.below.federal.poverty.threshold, r=.924) and Graduate.Degree (redundant with 
At.Least.Bachelor.s.Degree, r=.922).



A clear S factor can be seen with no important indicator loading 'in the wrong direction' (Kirkegaard, 
2014c). The results were very stable across parameters values (all factor congruence coefficients were 
1.00). The violent crime variable only had a moderate negative loading (-.40) which is strange because 
violent crime is usually a strong correlate of other socioeconomic variables and cognitive ability 
(Beaver & Wright, 2011; Kirkegaard, 2014a, 2014b, 2016). I don't have a hypothesis for why this is the
case.

3.5. Stability across choice of indicators

Most previous studies of both the general factor of cognitive ability (g) and S have found that they tend
to be similar when extracted from different indicators. This is known as the indifference of the 
indicator (Jensen, 1998; Johnson, te Nijenhuis, & Bouchard, 2008; Kirkegaard, In review, 2014c; 
Major, Johnson, & Bouchard Jr., 2011; Thorndike, 1987). As mentioned earlier, it is usually possible in 
an S factor analysis to pick other socioeconomic variables to use. For this reason, I devised a method 
for quantifying how large the effect of indicator sampling is (Kirkegaard, In review). The method 
consists simply of dividing the indicators into two sets at random, extracting the first factor in each set 
independently, and correlating the scores. This process is then repeated a large number of times to 
obtain a stable result. Figure 3 shows the distribution of these correlations for the current dataset.

Figure 2: S factor loadings across parameter values.



We see that the scores were generally very similar when they were extracted from different sets of 
indicators. The mean correlation was .86.

4. Self-identified race/ethnicity as predictors of CA/S

Previous studies of the relationship between SIRE and S in the US at the state-level found somewhat 
conflicting results. While there were usually moderate to strong negative relationships between Black%
(percent of the population that is Black/African American; I will leave out the % for convenience) and 
S indicators and moderate to strong positive relationships between White/European and S indicators, in
some but not all controlled analyses, the relationship was substantially reduced, disappeared entirely or 
even reversed in direction (Fuerst & Kirkegaard, 2016a, 2016b; Pesta, 2016). The conflicting results 
may be due to aggregation effects (lack of ergodicity), that is, analyzing the data at too high a level. If 
there is an aggregation effect at the state-level that causes the conflicting results for White and S, then it
will not be present when the data is analyzed at the county-level since this is one level below the state-
level.

In contrast, the results for CA and White have generally been consistently positive, including when 
control variables are included in regressions.

Finally, the previous inconsistent results may simply be due to sampling error (Hunter & Schmidt, 
2004). There are only 50 states in the US, so this is a small sample that results in considerable 
imprecision in the estimates.

Figures 4 and 5 show the relationships between SIREs (from the 2010 census6) and CA/S using 
LOESS. I only plot the fitted lines because plotting all the points would be chaotic (the plots with the 
points can be found in the supplementary materials).

6 White includes only non-Hispanic Whites as is common practice. Other includes persons with two or more races as well
as persons who gave their SIRE as something other than the 5 main options.

Figure 3: Distribution of split-half correlations. N=500.



Figure 5: Relationships between SIRE% of counties and S scores. Error
bars are 95% analytic confidence intervals. Lines are from LOESS

regressions.

Figure 4: Relationships between SIRE% of counties and cognitive ability.
Error bars are 95% analytic confidence intervals. Lines are from LOESS

regressions.



There are clear non-linearities for some SIREs. In general, however, we see that White and Asian is 
associated with higher CA/S up to a point. The dip for White at the end is not a coincidence. The 
counties that are nearly 100% White are mainly rural areas that span a wide range of CA/S levels. As 
expected, Black, Hispanic and Amerindian are clearly associated with lower CA/S and only show small
deviations from linearity at the low percents. The odd patterns for Asian and Other are hard to make 
sense of and the wide error bars indicate that they may be a coincidence.

Since correlations are measures of linear associations, they can be misleading when the relations are 
non-linear. However, because most previous research on the topic has used correlations, the 
correlations are given in Table 1 for comparison.

CA S White Black Hispanic Asian Amerindian Other

CA  0.68  0.59 -0.40 -0.40 -0.10 -0.13 -0.11

S  0.71  0.34 -0.52 -0.15  0.33 -0.14  0.15

White  0.57  0.53 -0.47 -0.76 -0.49 -0.05 -0.18

Black -0.53 -0.57 -0.62 -0.10 -0.05 -0.09 -0.10

Hispanic -0.14 -0.11 -0.58 -0.11  0.30 -0.03  0.00

Asian  0.06  0.23 -0.26  0.01  0.14 -0.08  0.54

Amerindian -0.23 -0.20 -0.30 -0.10 -0.04 -0.01  0.10

Other -0.08  0.07 -0.17 -0.09 -0.03  0.42  0.26

Table 1: Intercorrelations between SIRE% variables and CA/S. Weighted correlation above the
diagonal, unweighted below.

In general, we see the expected patterns. White is a notably weaker predictor of S when using weighted
correlations (.53 vs. .34). This is related to the dip at the end of the line seen in Figure 5. The 
relationship between Black and S was weaker in the present study than it was in Beaver and Wright's 
(-.72 uncorrected) (2011). Still, the only really odd result is the weak negative correlation between 
Asian and CA when using weights (-.10).

4.1. Multiple linear regression with SIREs

Since the SIRE variables must sum to 100%, taken together, the variables are perfectly linearly 
dependent and thus cannot all be included in a regression model. However, it is possible to include 
some of them and leave others out. As was done in prior analyses (Fuerst & Kirkegaard, 2016a; 
Kirkegaard & Fuerst, 2016), I tested all the possible models (63 models; Nmodels = p2 - 1, where p is the 
number of predictors). The top 5 models according to BIC are shown in Tables 2 and 3. All the models 
are shown in the supplementary materials (sheet CA_SIRE_models and S_SIRE_models).

White Black Hispanic Asian Amerindian Other BIC R adj.

0.72 0.11 0.14 -0.24 10653.79 0.64

-0.38 -0.81 -0.62 -0.47 -0.33 10657.27 0.64

-14.48 -11.15 -9.92 -1.75 -5.80 -1.70 10657.60 0.64



-0.53 -0.37 0.05 -0.33 -0.29 10657.70 0.64

0.55 -0.12 0.12 -0.12 -0.24 10658.33 0.64

Table 2: Top 5 SIRE models according to BIC. Outcome: CA.

White Black Hispanic Asian Amerindian Other BIC R adj.

0.70 0.20 0.26 -0.06 10191.82 0.66

1.26 0.41 0.57 0.33 0.19 10199.44 0.66

0.74 0.03 0.23 0.27 -0.05 10199.53 0.66

0.71 0.21 0.25 10199.54 0.66

0.70 0.20 0.26 -0.02 -0.05 10199.54 0.66

Table 3: Top 5 SIRE models according to BIC. Outcome: S.

One problem with selecting the top models this way is that one sometimes selects nonsensical models 
like models #2-3 for predicting CA. The strange betas are related to the lack of free variation in the 
predictors (multicollinearity). A better way to summarize the findings is to summarize the betas across 
all models, as done in Tables 4 and 5.

Statistic White Black Hispanic Asian Amerindian Other

mean 0.13 -0.63 -0.42 0.01 -0.41 -0.23

median 0.56 -0.46 -0.31 0.06 -0.28 -0.21

sd 2.71 1.96 1.78 0.33 1.01 0.28

mad 0.14 0.08 0.07 0.11 0.13 0.08

Table 4: Summary statistics of predictor betas across all models. Dependent variable: CA. Predictors:
SIREs.

Statistic White Black Hispanic Asian Amerindian Other

mean 0.41 -0.44 -0.03 0.22 -0.25  0.02

median 0.41 -0.53 -0.13 0.20 -0.29 -0.03

sd 0.77  0.55  0.51 0.10  0.29  0.13

mad 0.31  0.06  0.32 0.10  0.12  0.16

Table 5: Summary statistics of predictor betas across all models. Dependent variable: S. Predictors:
SIREs.

Because some of the models are nonsensical, it is best to use robust statistics (medians, median 
absolute deviations [mad]). Looking at these we see much the same results as we saw in Figures 4 and
5: White and Asian (only slightly for CA) are associated with better outcomes, Black, Hispanic, 
Amerindian and Other are associated with worse outcomes.

In contrast to earlier findings (Fuerst & Kirkegaard, 2016a; Kirkegaard & Fuerst, 2016), using more 
than one SIRE predictor did improve the predictive validity for S. The best single-predictor model for S



is Black% which has an adjusted R of .52, but the best multi-predictor models had .66. For cognitive 
ability, the best single-predictor model was White with an adjusted R of .59 while the best model had 
.64 which is only a slight improvement.

Trying all the models and picking the best by some model fit indicator tends to result in overfitted 
models (James et al., 2013). LASSO regression gets around this problem by systematically shrinking 
parameters towards 0. The amount of shrinkage is determined using in-sample cross-validation (k-
fold). This results in simpler models that are more likely to retain their predictive validity in a new 
sample. LASSO regression with cross-validation, however, has a random component (the folds are 
random), so results are not identical across runs. I ran it 500 times and summarized the results, which 
are shown in Tables 6 and 7.

Statistic White Black Hispanic Asian Amerindian Other

mean 0.42 -0.10 0.00 0.02 -0.06 0.00

median 0.42 -0.10 0.00 0.02 -0.06 0.00

sd 0.02  0.01 0.00 0.01  0.02 0.01

mad 0.02  0.00 0.00 0.01  0.02 0.00

fraction zero/NA 0.00  0.00 1.00 0.06  0.04 0.58

Table 6: Summary statistics of predictor betas from 500 LASSO regression runs. Dependent variable:
CA. Predictors: SIREs.

Statistic White Black Hispanic Asian Amerindian Other

mean 0.25 -0.28 0.00 0.15 -0.06 0.00

median 0.26 -0.28 0.00 0.15 -0.07 0.00

sd 0.02  0.00 0.00 0.01  0.02 0.00

mad 0.02  0.00 0.00 0.01  0.02 0.00

fraction zero/NA 0.00  0.00 1.00 0.00  0.00 0.99

Table 7: Summary statistics of predictor betas from 500 LASSO regression runs. Dependent variable:
S. Predictors: SIREs.

LASSO regression generally confirmed the findings from before, namely that White and Asian were 
positive predictors, while Black and Amerindian were negative predictors. It found no effect of 
Hispanic and Other, similar to their weak and null values before. I will hence refer to the model with 
White, Asian, Black and Amerindian as the best (SIRE) model.

4.2. SIRE homogeneity

Previous research has found very mixed results with regards to the effects of diversity on 
socioeconomic measures (e.g. interpersonal trust) (Eagly, 2016; Meer & Tolsma, 2014). It is possible to
construct a measure of SIRE homogeneity (the opposite of heterogeneity/diversity) with the data using 
what is often called Simpson's index. This is the chance that two randomly picked cases will belong to 
the same group, and is a measure of variation for nominal data that is bounded between 0 and 1 (least 



and most homogeneous with regards to SIRE). Figure 6 shows a LOESS plot of the relationship 
between homogeneity and S.

SIRE homogeneity has a non-linear relationship to S. The lowest S is found at both mid levels of 
homogeneity (around .5) and very high levels (close to 1). The latter part is presumably connected to 
the dip of White in Figure 5.

The odd pattern may be due to confounding with SIRE variables. To test this, the same approach as 
above was used except that the SIRE homogeneity variable was included among the predictors. Tables
8 and 9 show the summary statistics for the models. The full list of models can be found in the 
supplementary materials (sheet S_SIRE_homogeneity_models).

Statistic White Black Hispanic Asian Amerindian Other SIRE homogeneity

mean 0.55 -0.49 -0.03 0.22 -0.25  0.00 -0.16

median 0.55 -0.53 -0.09 0.23 -0.28 -0.05 -0.29

sd 0.68  0.49  0.47 0.08  0.26  0.13  0.31

mad 0.36  0.18  0.42 0.07  0.16  0.15  0.28

Table 8: Summary statistics for all models. Dependent variable: S. Predictors: SIREs + SIRE
homogeneity.

Statistic White Black Hispanic Asian Amerindian Other SIRE homogeneity

mean 0.34 -0.30 0.00 0.17 -0.13 -0.01 -0.05

median 0.34 -0.30 0.00 0.17 -0.13 -0.01 -0.05

sd 0.04  0.01 0.00 0.01  0.02  0.01  0.04

mad 0.04  0.01 0.00 0.00  0.01  0.01  0.05

Figure 6: The relationship between SIRE homogeneity and S. Line
fitted by LOESS.



fraction zero /
NA 0.00  0.00 1.00 0.00  0.00  0.18  0.18

Table 9: Summary statistics of predictor betas from 500 LASSO regression runs. Dependent variable:
S. Predictors: SIREs + SIRE homogeneity.

The SIRE results are similar to the previous results and the results for SIRE homogeneity depended on 
which method was used: they were moderately negative using all OLS and only barely negative with 
LASSO (and was a redundant predictor in 18% of the runs).

It is possible that SIRE homogeneity has non-linear effects that persist after taking SIREs into account. 
To investigate this, I used the best SIRE model for S and extracted the residuals. Figure 7 shows the 
relationship between the residualized S scores and SIRE homogeneity.

There was a somewhat non-linear and slight negative relationship, as seen before the residualization. It 
is difficult to come up with a plausible causal model for the pattern and for that reason I did not include
this as a predictor in later models.

4.3. Structural outliers and SIRE homogeneity

Exploratory factor analysis can reveal the underlying structure of a dataset (Everitt & Hothorn, 2011). 
However, some cases may not fit the structure well. These cases can be said to be structural outliers or 
mixed (Kirkegaard, 2015). Previously, three main methods were developed to quantify this: 1) mean 
absolute residual (MAR), 2) change in factor size (CFS), and 3) absolute loading change (ALC) 
(Kirkegaard, In review). Two variants of the second and third methods exist and each of the five 
methods-variants were applied to the present dataset. There was moderate to strong agreement between 
the methods (r's .48 to .80). A general estimate was calculated by summing the Z-transformed scores on
MAR, absolute CFS and mean ALC.

Mixedness in S factor analyses in general probably arises from aggregation effects where very different
groups of persons are found in the same unit; when one takes the average of this, one will get strange 

Figure 7: SIRE homogeneity and residualized S scores. Fitted line =
LOESS.



numbers. For instance, the most mixed case in the present dataset is the District of Columbia, which 
houses both the very upper class group of persons in charge of the US and the lobbyists they attract, as 
well as a large Black underclass consisting of about 49% of the population.

It seems likely that such strange mixes of people will be found in counties that are more SIRE 
heterogeneous. Figure 8 shows the correlation of the general estimate of mixedness and SIRE 
homogeneity.

We see a relationship in the expected direction. It is also clear that a few cases are distant outliers with 
regards to mixedness. They may be interesting to examine in detail in a future study.

5. Natural environmental predictors of CA/S

Some have argued that the contemporary climate and geography have causal effects on cognitive 
ability and socioeconomic outcomes (León, 2015; León & Burga-León, 2015; León, 2016; Deryugina 
& Hsiang, 2014). Proponents of such theories have analyzed national-level or US state-level datasets. 
The study by Deryugina and Hsiang (2014) is an especially convincing exception. They used a multi-
year dataset of daily temperatures for US counties. They looked at the years where a given county had 
many warm or cold days relative to the other years. It is thus a kind of repeated measurements model 
with random treatment/intervention assignments (year to year variation in temperature). The method 
thus controls for all fixed effects of the counties such as ethnoracial composition and geospatial 
location. If temperature has a causal effect on income, the counties that happen to have higher 
temperatures a given than normally a given year should also see a change in its income, and such a 
relationship was in fact found. The relationship was non-linear in the expected way: both very warm 
and very cold days had a negative impact on income. Furthermore, the result held across a number of 
controls such as taking into account the effect of temperature on neighboring counties. Most 
convincingly, they found that temperature had large effects on weekdays and small, even reversed 
effects on weekends.

I do not have daily or yearly temperature data, so the method used by Deryugina and Hsiang cannot be 
used on the present dataset. However, I can use the more traditional and methodologically weaker 
regressions methods employed before.

Figure 8: SIRE homogeneity and mixedness.



5.1. Linear regressions and correlations

The studies by León and my own previous studies all modeled the effects of climatological variables as
being linear (Fuerst & Kirkegaard, 2016a, 2016b; Kirkegaard & Fuerst, 2016; León, 2015, 2016; León 
& Burga-León, 2015). This is probably a bad idea given the results obtained by Deryugina and Hsiang. 
However, since most previous studies used linear models, it is worth also doing the linear regressions 
and correlations for comparison purposes. Table 10 shows the intercorrelations between geospatial, 
climatological and outcome variables.

CA S lat lon elevation precip temp temp_max temp_min

CA  1.00  0.68  0.32  0.38 -0.07  0.25 -0.37 -0.40 -0.32

S  0.68  1.00  0.34 -0.05  0.08 -0.10 -0.34 -0.34 -0.32

lat  0.32  0.34  1.00  0.10  0.12 -0.08 -0.93 -0.93 -0.90

lon  0.38 -0.05  0.10  1.00 -0.41  0.56 -0.20 -0.27 -0.12

elevation -0.07  0.08  0.12 -0.41  1.00 -0.56 -0.24 -0.11 -0.36

precip  0.25 -0.10 -0.08  0.56 -0.56  1.00  0.05 -0.06  0.17

temp -0.37 -0.34 -0.93 -0.20 -0.24  0.05  1.00  0.98  0.98

temp_max -0.40 -0.34 -0.93 -0.27 -0.11 -0.06  0.98  1.00  0.92

temp_min -0.32 -0.32 -0.90 -0.12 -0.36  0.17  0.98  0.92  1.00

Table 10: Intercorrelations between outcome and climatological variables. Weighted correlations.
Temperature data are annual values.

The temperature variables (temp, temp_max, temp_min) were too strongly correlated to be used 
together in regression analysis. I used only the average temperature (temp) in the later analyses.

Tables 11 and 12 shows the OLS regression results for the best SIRE model with the climatological and
geospatial variables added.

Predictor Beta CI lower CI upper

White 0.31 0.27 0.35

Black -0.42 -0.46 -0.38

Asian 0.10 0.08 0.11

Amerindian -0.14 -0.20 -0.09

lat 0.31 0.20 0.41

lon 0.40 0.37 0.44

elevation 0.17 0.12 0.22

precip 0.16 0.12 0.20

temp 0.27 0.16 0.38

Table 11: Regression results. Outcome: CA. Predictors: SIREs, climatological and geospatial



variables. CI = 95% analytic confidence intervals. Cross-validated R = .72.7

Predictor Beta CI lower CI upper

White 0.29 0.25 0.33

Black -0.37 -0.41 -0.33

Asian 0.23 0.22 0.25

Amerindian -0.22 -0.28 -0.17

lat 0.35 0.27 0.43

lon 0.20 0.17 0.23

elevation 0.19 0.14 0.24

precip 0.02 -0.01 0.05

temp 0.28 0.19 0.36

Table 12: Regression results. Outcome: S. Predictors: SIREs, climatological and geospatial variables.
CI = 95% analytic confidence intervals. Cross-validated R = .71.

We see that the betas for the SIRE predictors were mostly unchanged. Four of the new predictors 
seemed to have reliable predictive validity with betas from .19 to .35. Only precipitation did not seem 
to have any validity. However, the incremental validity added by the new predictors was negligible to 
small: delta R's .12 and .03, for cognitive ability and S, respectively.

Because OLS tends to overfit, the same predictors were examined using LASSO regression (500 runs). 
Table 13 and 14 shows the summary statistics.

Statistic White Black Hispanic Asian Amerindian Other lat lon elevation precip temp

mean 0.29 -0.33 0.00 0.05 -0.05 0.00 0.03 0.28 0.00 0.07 0.00

median 0.29 -0.33 0.00 0.05 -0.05 0.00 0.03 0.28 0.00 0.06 0.00

sd 0.00  0.01 0.00 0.01  0.01 0.00 0.00 0.01 0.00 0.01 0.00

mad 0.00  0.01 0.00 0.01  0.01 0.00 0.00 0.01 0.00 0.01 0.00

fraction
zero/NA 0.00  0.00 1.00 0.00  0.00 1.00 0.00 0.00 1.00 0.00 1.00

Table 13: Summary statistics for LASSO regression. 500 runs. Outcome: cognitive ability. Predictors:
SIREs, climatological and geospatial predictors.

Statistic White Black Hispanic Asian Amerindian Other lat lon elevation precip temp

mean 0.22 -0.30 0.00 0.15 -0.11 0.00 0.09 0.02 0.00 0.00 0.00

median 0.22 -0.30 0.00 0.15 -0.11 0.00 0.09 0.02 0.00 0.00 0.00

sd 0.01  0.01 0.00 0.01  0.02 0.00 0.01 0.01 0.00 0.00 0.00

mad 0.01  0.01 0.00 0.01  0.01 0.00 0.01 0.02 0.00 0.00 0.00

7 Cross-validated R's were calculated from 10-fold cross validation with 100 replications. See MOD_summary in the 
kirkegaard package for details.



fraction
zero/NA 0.00  0.00 1.00 0.00  0.00 1.00 0.00 0.13 1.00 1.00 0.44

Table 14: Summary statistics for LASSO regression. 500 runs. Outcome: S scores. Predictors: SIREs,
climatological and geospatial predictors.

We see that LASSO regression agreed that the SIRE predictors were useful and that precipitation was 
useless, but that it disagreed with OLS with regards to the status of elevation which OLS found to be 
useful while LASSO did not. The status of temperature was very doubtful in LASSO regression, being 
redundant in 100/44% of the runs for cognitive ability/S, and having a very small beta when it was not. 
The geospatial variables were also found to have small to near-zero betas in LASSO regression.

5.1.1. Path modeling

The geospatial variables are causally antecedent to the climatological variables (mean temperature 
cannot cause longitude). Thus, it would make more sense to model the data in a way that takes into 
account this relationship between the predictors. This was done via path analysis fitted with the lavaan 
package (Rosseel et al., 2015).8 Figures 9 and 10 shows the path model with the estimated paths.

8 I additionally used the survey and lavaan.survey packages to allow for weighted path analysis (Lumley, 2014; Oberski,
2015).

Figure 9: Path model for SIRE, climatological and geospatial variables' effect on
cognitive ability.



We see that the effects of the SIREs are similar to before with Asian and White both being stronger 
than what OLS and LASSO regression found. The four environmental variables also have positive 
paths as before and precipitation had around 0.

5.2. Non-linear effects of temperature

How non-linear are the effects of temperature in the present dataset? Figures 11 to 14 show the LOESS 
fitted lines for the relationship between annual mean temperature, and the outcome variables and the 
outcome variables residualized by the best SIRE model, respectively.

Figure 10: Path model for SIRE, climatological and geospatial variables' effect on S.



Figure 13: Annual mean temperature and S.
Line fit by LOESS.

Figure 11: Annual mean temperature and
cognitive ability. Line fit by LOESS.

Figure 12: Annual mean temperature and
cognitive ability residualized by SIRE model.

Line fit by LOESS.



We see that temperature has a strong non-linear relationship to the outcome variables, both when they 
have been residualized by the SIRE model first and when they have not. Thus, the influence of 
temperature should be modeled using a model that allows for non-linear relationships. The method 
used by Deryugina and Hsiang was to discretize the temperature data and treat each bin as a level in a 
categorical variable. This allows for the non-linear effects to be seen. The same method was used in the
present study. 10 equal-sized bins were created. This was used instead of equal-ranged bins (the 
default) because the data were skewed, and using equal-ranged bins resulted in some bins having very 
few (<10) cases. Tables 15 and 16 shows the model betas.

Predictor Beta CI lower CI upper

White 0.49 0.45 0.53

Black -0.09 -0.13 -0.06

Asian 0.09 0.08 0.10

Amerindian -0.18 -0.24 -0.11

temp_bins: (6.53,8.17] 0.02 -0.18 0.23

temp_bins: (8.17,9.56] 0.03 -0.16 0.22

temp_bins: (9.56,10.7] 0.06 -0.13 0.24

temp_bins: (10.7,11.9] 0.32 0.13 0.51

temp_bins: (11.9,13.4] -0.01 -0.20 0.19

temp_bins: (13.4,14.9] -0.39 -0.58 -0.19

temp_bins: (14.9,16.6] -0.45 -0.64 -0.26

temp_bins: (16.6,18.4] -0.55 -0.75 -0.36

temp_bins: (18.4,25.2] 0.10 -0.09 0.29

Table 15: OLS regression betas. Outcome: cognitive ability. Predictors: SIREs and discretized
temperature. Cross-validated R = .65.

Predictor Beta CI lower CI upper

Figure 14: Annual mean temperature and S
residualized by SIRE model. Line fit by

LOESS.



White  0.29  0.26  0.33

Black -0.28 -0.31 -0.25

Asian  0.21  0.19  0.22

Amerindian -0.23 -0.28 -0.17

temp_bins: (6.53,8.17]  0.09 -0.10  0.27

temp_bins: (8.17,9.56]  0.04 -0.13  0.20

temp_bins: (9.56,10.7] -0.07 -0.24  0.09

temp_bins: (10.7,11.9]  0.04 -0.13  0.20

temp_bins: (11.9,13.4] -0.38 -0.55 -0.21

temp_bins: (13.4,14.9] -0.36 -0.53 -0.18

temp_bins: (14.9,16.6] -0.34 -0.51 -0.17

temp_bins: (16.6,18.4] -0.47 -0.65 -0.30

temp_bins: (18.4,25.2] -0.32 -0.49 -0.16

Table 16: OLS regression betas. Outcome: S. Predictors: SIREs + discretized temperature. Cross-
validated R = .71.

We see that the SIRE variables' betas were unchanged in direction, but smaller in size for cognitive 
ability except for White. The strange non-linear pattern seen in Figure 14 was repeated in the beta 
values, namely that there was a steep decline in the betas beginning around temperature = 10-12 ºC.

5.3. Non-linear effects of all environmental predictors

Given the non-linear effects of temperature, we might wonder about the other environmental 
predictors. Do they also show non-linear effects? To investigate whether this was the case, all the 
environmental predictors were discretized into 10 bins in the same way temperature was before and 
entered into regression models. Tables 17 and 18 shows the model betas.

Predictor Beta CI lower CI upper

White  0.39  0.35  0.43

Black -0.32 -0.36 -0.27

Asian  0.14  0.12  0.15

Amerindian -0.15 -0.20 -0.09

temp_bins: (6.53,8.17]  0.10 -0.08  0.29

temp_bins: (8.17,9.56]  0.12 -0.06  0.29

temp_bins: (9.56,10.7]  0.24  0.06  0.43

temp_bins: (10.7,11.9]  0.44  0.23  0.64

temp_bins: (11.9,13.4]  0.00 -0.23  0.22

temp_bins: (13.4,14.9]  0.14 -0.12  0.41

temp_bins: (14.9,16.6]  0.15 -0.13  0.44

temp_bins: (16.6,18.4]  0.08 -0.23  0.40

temp_bins: (18.4,25.2]  0.06 -0.29  0.40

lat_bins: (31.7,33.8] -0.04 -0.19  0.11



Predictor Beta CI lower CI upper

lat_bins: (33.8,35.6] -0.42 -0.60 -0.24

lat_bins: (35.6,37.1] -0.48 -0.68 -0.29

lat_bins: (37.1,38.4] -0.57 -0.80 -0.34

lat_bins: (38.4,39.7] -0.14 -0.38  0.10

lat_bins: (39.7,41] -0.28 -0.53 -0.03

lat_bins: (41,42.8] -0.11 -0.38  0.16

lat_bins: (42.8,45] -0.14 -0.43  0.16

lat_bins: (45,69.4]  0.32  0.01  0.63

lon_bins: (-109,-100]  0.71  0.55  0.87

lon_bins: (-100,-96.7]  1.25  1.08  1.41

lon_bins: (-96.7,-93.6]  1.17  1.01  1.33

lon_bins: (-93.6,-90.4]  0.77  0.60  0.93

lon_bins: (-90.4,-87.2]  0.76  0.60  0.92

lon_bins: (-87.2,-84.5]  0.81  0.64  0.97

lon_bins: (-84.5,-82.1]  0.96  0.80  1.13

lon_bins: (-82.1,-78.2]  1.17  1.02  1.33

lon_bins: (-78.2,178]  1.30  1.14  1.46

precip_bins: (430,603]  0.22  0.11  0.34

precip_bins: (603,800]  0.04 -0.13  0.20

precip_bins: (800,923]  0.19  0.02  0.36

precip_bins: (923,1.03e+03]  0.18  0.01  0.35

precip_bins: (1.03e+03,1.12e+03]  0.23  0.06  0.39

precip_bins: (1.12e+03,1.19e+03]  0.41  0.24  0.58

precip_bins: (1.19e+03,1.28e+03]  0.26  0.10  0.42

precip_bins: (1.28e+03,1.39e+03]  0.18  0.02  0.33

precip_bins: (1.39e+03,4.3e+03]  0.22  0.06  0.37

elevation_bins: (38.9,105]  0.08 -0.02  0.17

elevation_bins: (105,167] -0.05 -0.15  0.06

elevation_bins: (167,216] -0.11 -0.22  0.00

elevation_bins: (216,259]  0.00 -0.12  0.12

elevation_bins: (259,317] -0.03 -0.15  0.09

elevation_bins: (317,396] -0.07 -0.20  0.06

elevation_bins: (396,572] -0.19 -0.33 -0.06

elevation_bins: (572,1.01e+03]  0.17  0.01  0.33

elevation_bins: (1.01e+03,3.06e+03]  0.43  0.23  0.63

Table 17: OLS regression betas with discretized environmental predictors. Outcome: cognitive ability.
Predictors: SIREs and environmental predictors. Cross-validated R = .76.



Predictor Beta CI lower CI upper

White  0.32  0.28  0.37

Black -0.32 -0.36 -0.27

Asian  0.21  0.20  0.23

Amerindian -0.20 -0.25 -0.14

temp_bins: (6.53,8.17]  0.07 -0.11  0.26

temp_bins: (8.17,9.56]  0.07 -0.11  0.24

temp_bins: (9.56,10.7]  0.08 -0.11  0.27

temp_bins: (10.7,11.9]  0.12 -0.09  0.32

temp_bins: (11.9,13.4] -0.33 -0.56 -0.10

temp_bins: (13.4,14.9]  0.02 -0.24  0.28

temp_bins: (14.9,16.6]  0.01 -0.28  0.29

temp_bins: (16.6,18.4] -0.22 -0.54  0.10

temp_bins: (18.4,25.2] -0.04 -0.39  0.30

lat_bins: (31.7,33.8]  0.28  0.14  0.43

lat_bins: (33.8,35.6] -0.03 -0.21  0.14

lat_bins: (35.6,37.1] -0.25 -0.45 -0.06

lat_bins: (37.1,38.4] -0.33 -0.56 -0.11

lat_bins: (38.4,39.7]  0.25  0.01  0.49

lat_bins: (39.7,41] -0.10 -0.34  0.15

lat_bins: (41,42.8]  0.00 -0.28  0.27

lat_bins: (42.8,45] -0.09 -0.38  0.21

lat_bins: (45,69.4]  0.12 -0.18  0.43

lon_bins: (-109,-100] -0.02 -0.18  0.14

lon_bins: (-100,-96.7] -0.05 -0.21  0.11

lon_bins: (-96.7,-93.6]  0.13 -0.03  0.29

lon_bins: (-93.6,-90.4]  0.01 -0.16  0.17

lon_bins: (-90.4,-87.2]  0.00 -0.17  0.16

lon_bins: (-87.2,-84.5] -0.09 -0.26  0.08

lon_bins: (-84.5,-82.1] -0.09 -0.25  0.08

lon_bins: (-82.1,-78.2]  0.17  0.01  0.33

lon_bins: (-78.2,178]  0.53  0.37  0.69

precip_bins: (430,603]  0.00 -0.12  0.11

precip_bins: (603,800]  0.10 -0.06  0.27

precip_bins: (800,923]  0.20  0.04  0.37

precip_bins: (923,1.03e+03]  0.00 -0.16  0.17

precip_bins: (1.03e+03,1.12e+03] -0.08 -0.25  0.08

precip_bins: (1.12e+03,1.19e+03]  0.00 -0.16  0.16

precip_bins: (1.19e+03,1.28e+03]  0.02 -0.14  0.18



Predictor Beta CI lower CI upper

precip_bins: (1.28e+03,1.39e+03] -0.10 -0.25  0.06

precip_bins: (1.39e+03,4.3e+03]  0.01 -0.15  0.17

elevation_bins: (38.9,105]  0.02 -0.07  0.12

elevation_bins: (105,167]  0.02 -0.08  0.13

elevation_bins: (167,216]  0.02 -0.09  0.13

elevation_bins: (216,259]  0.04 -0.08  0.16

elevation_bins: (259,317]  0.17  0.05  0.29

elevation_bins: (317,396] -0.06 -0.19  0.07

elevation_bins: (396,572] -0.07 -0.20  0.06

elevation_bins: (572,1.01e+03] -0.11 -0.27  0.05

elevation_bins: (1.01e+03,3.06e+03]  0.32  0.11  0.52

Table 18: OLS regression betas with discretized environmental predictors. Outcome: S. Predictors:
SIREs and environmental predictors. Cross-validated R = .71.

It can be difficult to get an overview of the importance of variables when presented with every level. 
Some levels may have strong betas but if few cases fall in those levels, they will not be important in the
overall model. To see the importance of each predictor across all levels, one can conduct an analysis of 
variance and then calculate the eta squared for each. This is the amount of variance (R2) attributable to 
that predictor across all levels. Tables 19 and 20 shows this for the model two models.

Predictor Eta2 Partial Eta2

White 0.36 0.52

Black 0.02 0.05

Asian 0.02 0.07

Amerindian 0.01 0.02

temp_bins 0.07 0.18

lat_bins 0.04 0.11

lon_bins 0.12 0.27

precip_bins 0.00 0.01

elevation_bins 0.01 0.02

Table 19: Analysis of variance for regression with discretized environmental predictors. Outcome:
cognitive ability. Predictors: SIREs and natural environmental variables.



Predictor Eta2 Partial Eta2

White 0.14 0.26

Black 0.17 0.30

Asian 0.20 0.33

Amerindian 0.01 0.02

temp_bins 0.03 0.08

lat_bins 0.02 0.06

lon_bins 0.03 0.06

precip_bins 0.01 0.01

elevation_bins 0.01 0.02

Table 20: Analysis of variance for regression with discretized environmental predictors. Outcome: S.
Predictors: SIRE and natural environmental variables.

We can now more clearly see that results indicate that White, Black and Asian (the latter two only for 
S) are important predictors while the environmental variables and Amerindian% were not. The SIRE 
variables explained most of the variation explained by the models: 62%/84% for cognitive ability and 
S, respectively. This is the opposite pattern of what was found for the US state-level analysis, where S 
was more explainable by non-SIRE predictors than cognitive ability (Fuerst & Kirkegaard, 2016a, 
Section 11).

Because the models now have 49 predictors (4 + 5*9), overfitting is a problem. To explore how large a 
problem, LASSO regression was run with the discretized environmental predictors as well as the 
primary SIRE variables. No consistent pattern emerged in the results aside from two: First, the SIRE 
predictors continued to be useful and have the same signs, and second, occasionally, one bin of some 
environmental variable was useful, while others were not, even its own neighbors. I cannot think of a 
sensible causal model that can explain why these bins would be important but the neighboring bins 
would not. It seems more likely to be some spatial confound.

The full results can be found in the supplementary materials (sheets envir_nonlin_CA_lasso and 
envir_nonlin_S_lasso).

6. Spatial patterns in the data

Administrative divisions are units that have a spatial position. Usually, this means that cases that are 
located close to each other are similar, a phenomenon known as positive spatial autocorrelation. Figure
15 illustrates the concept.



Standard statistical methods assume that error terms are not correlated in any meaningful way, but with 
spatial autocorrelation in the data, the error terms (residuals) of nearby cases can become correlated, 
which has the effect of biasing some model estimates (Gelade, 2008; Hassall & Sherratt, 2011).

Hassall and Sheratt (2011) proposed the following strategy for handling the problem:

1. Calculate spatial autocorrelation measures for the primary variables.

2. If step 1 indicates a sizable amount of spatial autocorrelation in the primary variables, then fit 
the models of interest and save the residuals. Calculate spatial autocorrelation measures for the 
residuals.

3. If step 2 indicates that there is a sizable amount of spatial autocorrelation in the residuals, then 
control for spatial autocorrelation using specific spatial models.

Fuerst and Kirkegaard (2016a) used this approach and it was also used in this study.

6.1. Measured spatial autocorrelation in the data

The latitude and longitude of each county was available and with those one can calculate measures of 
spatial autocorrelation (SAC). The most commonly used method is Moran's I, but there are also others 
such as Geary's C, the Mantel test and k-nearest spatial neighbor regression (KNSNR) correlation 
(Radil, 2011; Kirkegaard, 2015). Of these, only the KNSNR correlation has a simple intuitive meaning:
it is the correlation of the predicted values for cases based on their k-nearest neighbors with the 
observed values for the same cases. It is a direct measure of how well one can predict the value of a 
given case by only looking at its neighbors.

The standard implementation of Moran's I is a universal measure of spatial autocorrelation. KNSNR, 
on the other hand, is always local. One must choose how local, by choosing a value of k; the number of
neighbors to use in the predictions. The value of k specifies the reach of the neighbor effects. To 
estimate what a good value of k would be, the KNSNR correlations were calculated for every k = 1-30 
for cognitive ability, S and the SIRE variables. Figure 16 shows the results.

Figure 15: Illustrations of spatial autocorrelation (Radil, 2011)



As was observed in the other studies, a value of k around 3-10 produces the largest correlations. In this 
case, k=7 had the strongest results (mean r = .78), but the differences were trivial (k = 4-10 all had 
mean r's ≥.77). Nevertheless, the following analyses uses k=7.

I have implemented three of the SAC measures in a convenient function for R and this was used to 
measure SAC for each variable. Table 21 shows the results.

Variable Moran's I Mantel test KNSNR 7

CA 0.10 0.08 0.62

S 0.16 0.07 0.76

White 0.14 0.17 0.82

Black 0.20 0.02 0.87

Hispanic 0.15 0.20 0.89

Asian 0.06 0.24 0.67

Amerindian 0.03 0.22 0.66

Other 0.08 0.25 0.79

Table 21: Measures of spatial autocorrelation in the primary variables.

To my knowledge, there are no useful guidelines for the effect sizes of Moran's I or the Mantel test. 
However, KNSNR is a correlation, so the usual guidelines apply. We see that using the counties' 
neighboring cases, the correlations range from .62 to .89, all of which are large by conventional 

Figure 16: k-nearest spatial neighbor regression correlations for cognitive ability, S and SIREs
by k.



standards. In other words, by knowing the values of the neighbors of a given county, one can predict 
the values of that county fairly well.

6.2. SAC in model residuals

Since the primary variables are strongly SAC, SAC should be measured in the model residuals as well. 
If these are also strongly SAC, then there are spatial patterns in the outcome variables (cognitive ability
and S) that cannot be accounted for by those in the predictor variables. To check this, I fitted the best 
SIRE model from before for both cognitive ability and S and saved the residuals. After this, the 
residuals were examined for SAC. Table 22 shows the results with the results for the original outcome 
variables for comparison.

Variable Moran's I Mantel test KNSNR 7

CA resids 0.07 0.02 0.60

S resids 0.13 0.05 0.79

CA 0.10 0.08 0.66

S 0.16 0.07 0.79

Table 22: Spatial autocorrelation in outcome variables before and after residualization by the SIRE
model.

Unexpectedly, we see that the residuals show about the same level of SAC as do the original values. 
Interpreting this is tricky. It does not mean that the predictors could not explain the SAC in the 
outcomes variable at all. Because if predictors could only predict the non-SAC variance in the 
outcome, then SAC would increase in the residuals. Thus, when the amount of SAC is unchanged, it 
seems to me that this means that the predictors were equally good at predicting the SAC and non-SAC 
variance in the outcome. This inference should be tested in a future simulation study.

6.3. Controlling for SAC

Since there was strong SAC in the model residuals, the model assumptions underlying OLS regression 
are violated (correlated errors), and the predictors may be spurious causes that happen to be SAC with 
the true cause(s). We can try to correct for this by using an explicit spatial model. There are multiple 
ways to explicitly control for SAC which rely on different assumptions (Diniz-Filho, Nabout, de 
Campos Telles, Soares, & Rangel, 2009). Hassall and Sheratt (2011) use a method called spatial 
eigenvector mapping. Unfortunately, they used an external application to perform this analysis and I 
have not been able to find a suitable implementation in R. To control for SAC, I developed two other 
methods: one based on KNSNR and one based on spatial local regression (SLR) (Kirkegaard, 2015).

The idea with the KNSNR correction is to first predict the values of each case using the neighbors' 
values. Then, one can either enter these as a predictor in a model along with the predictors one's 
interested in ('multiple regression variant'), or use them to partial out the spatial pattern in the 
dependent variable and use the residuals as the new dependent variable ('partial correlation variant'). 
The first variant can be problematic when SAC is strong and the predictors are good at predicting the 
dependent variable because this means that the model will have a high multicollinearity.



The idea with SLR is combine the ideas of spatial statistics and local regression. Since the SAC has to 
do with the overall patterns in the data, one can effectively minimize the problem by looking at very 
small subsets of the data. Specifically, for each case, one finds its k-1 nearest neighbors. One then uses 
the k cases (the case and its k-1 neighbors) to fit the model and saves the results. This is done for every 
case. The results are then aggregated (akin to meta-analysis) in the end to produce an overall SAC-
minimized estimate.

For the methods, k=7 was chosen in accordance with the findings in Section 6.1. The partial correlation
method was employed, i.e. all variables had SAC partialed out. This method is more conservative in 
that it probably results in some true predictor variance being removed from the outcome variable. 
Tables 23 and 24 show the betas for the SIRE model with and without controls for SAC for each 
outcome variable.

Predictor Uncorrected KNSNR SLR Mean controlled

White 0.36 0.46 0.35 0.41

Black -0.32 -0.11 -0.16 -0.13

Asian 0.15 0.18 0.29 0.24

Amerindian -0.16 -0.05 -0.08 -0.06

Table 23: Model betas pre- and post-SAC correction. Outcome: cognitive ability.

Predictor Uncorrected KNSNR SLR Mean controlled

White  0.35  0.49  0.35 0.42

Black -0.37 -0.19 -0.16 -0.18

Asian  0.33  0.22  0.41  0.32

Amerindian -0.12 -0.12 -0.13 -0.12

Table 24: Model betas pre- and post-SAC correction. Outcome: S.

Generally, the betas were fairly unchanged by the SAC control procedures, with the exception of 
Black which, while it kept its negative sign, was substantially reduced for both outcome variables and 
across both methods.

Assuming that the methods work, this indicates that the relationship between the predictors and the 
outcomes were not confounded by unobserved SAC causes.

7. Multilevel analyses

Counties are located within states which, in turn, are located inside the US. This hierarchical nature of 
the data can result in correlated errors for the same reason that SAC can.9 This can be accommodated 
by using models designed to analyze such data variously called multilevel or hierarchical models. 
Unfortunately, multilevel models require a fairly large sample size to fit and I was unable to fit true 
multilevel models to the present data. However, it is still possible to carry out multilevel analyses in the

9 Of course, since the counties of a given state are all located in a particular area of the country, state-related correlated 
errors may simply be due to SAC.



sense that one can analyze features of the dataset within each state and at the state-level by aggregating 
the data inside each state ('pseudo-multilevel').

7.1. Stability of the S factor structure across levels

It is possible that when subsets of the data are examined, there is no general factor at all; that the S 
factor that appears when all the data are analyzed is due to state-level effects. There are three ways one 
can examine the data:

1. Analyze all the counties in one analysis. This is what was done in Section 3.4.

2. Split the counties into sets based on states and run the factor analysis in each set.

3. Split the counties into sets based on states, calculate an average of each S indicator within each 
state and then factor analyze the data. This would be the same as analyzing the data at the state-
level.

7.1.1. Factor analysis of counties by state

Because some states had too few cases for factor analysis to work, only the states where there were no 
extraction errors were included (N=37). The loadings of each factor analysis were then saved and 
compared using congruence coefficients (Lorenzo-Seva & Ten Berge, 2006). Figure 17 shows a 
density-histogram of the congruence coefficients.

As can be seen, the factor congruence coefficients were very strong, especially considering that many 
states only have a few counties (e.g. Oregon has 35). Thus, if one were to somehow control for the 
'sampling error'10, the factor structure would possibly be perfectly identical across states. I don't know 
any method to do this, but one could try to confirm the diagnosis by analyzing the deviation from the 
main analysis and the number of cases for each analysis. To do this, the mean absolute difference in 
factor loadings form the main analysis were calculated, and then correlated it with the number of 

10 I note that talking of sampling error assumes that we are trying to infer features of some larger population. Of course, in
one sense we already have the entire population of counties; there are no more counties out there to add to the dataset. 
However, in another sense, there could have been more and if there were more, natural random variation would not 
affect the similarity of factor structure so much.

Figure 17: Density-histogram of congruence
coefficients. The vertical line is the mean

value (.87). N=630



counties by state. Figure 18 shows the results.

There is indeed a negative correlation such that the states with more counties deviate less from the 
results using all the data. An alternative method was also tried using congruence coefficients compared 
to the main model. This gave nearly identical results (r = .39). The two measures correlated at -.92. 
Thus, it appears that the factor structure was very similar across levels and the dissimilarity that was 
observed was due at least in part to the small number of cases in some analyses.

7.1.2. Factor analysis at the state-level

There has already been published two large S factor analyses of US states (Kirkegaard, 2015, 2015), so 
carrying out another may seem redundant. However, they used different variables, and the structure at 
the state-level may not be similar to that found when all the counties are examined together. To 
determine the similarity of the S factor structures at the two levels, I calculated the mean of each S 
indicator within each state, and then factor analyzed the aggregated data. Figure 19 shows the results 
with the factor analysis from the main county-level analysis for comparison.

Figure 18: Difference to the full analysis loadings and number of
counties by state.



The loadings are nearly identical across levels. The congruence coefficient is .98. A similar result was 
seen in a previous unpublished study of a general religious factor among Muslims (Kirkegaard, 2015).

7.2. Multilevel regression with SIREs

In Section 4.1, we saw that in the best model, White and Asian had positive betas while Black and 
Amerindian had negative betas. It is possible, though, that these values arise from some aggregation 
effect. To examine whether this was the case, the SIRE model was fit within each state. Table 25 shows
the summary statistics for the model betas.

Statistic White Black Asian Amerindian

mean -0.30 -1.46 0.61 -3.25

median  0.37 -0.63 0.58 -0.68

sd  2.55  4.59 0.87  7.72

mad  0.61  1.01 0.45  1.56

fraction zero / NA  0.02  0.02 0.04  0.06

Table 25: Summary statistics for SIRE predictors for models fit by state.

Due to the small (too small) size of some states in terms of counties, some nonsensical betas were 
obtained.11 These throw off the standard measures (mean and sd), so it is important to focus on the 

11 For instance, one state had a negative standardized beta of -12 for White%, while another had a positive beta of 21 for 
Amerindian%.

Figure 19: Factor loadings at the county- and state-level.



robust statistics (median and mad). These show that the usual pattern of results were found when the 
data were analyzed in this way. If anything, they were somewhat stronger, indicating that state-level 
effects were suppressing the betas somewhat.

8. Fixed effects of states

During the review, Noah Carl suggested including dummies for the states into the multiple regressions. 
To do this, three regressions were run, all of which had S as the outcome variable. In the first, cognitive
ability and State were included as predictors. In the second, the SIRE predictors were added, and in the 
third, the discretized natural environmental predictors were added as well. Due to the large number of 
predictors and their levels (89 in the third model), it would take too much space to present the full table
of predictor betas. Instead, the ANOVA-based eta squared values are given in Tables 26, 27 and 28. The
full results can be found in the supplementary materials (sheets State_fixed_1, State_fixed_2 and 
State_fixed_3).

Predictor Eta2 Partial Eta2

CA 0.47 0.64

State 0.27 0.50

Table 26: ANOVA-based effect sizes. Outcome: S. Predictors: cognitive ability, state. Cross-validated R
= .83.

Predictor Eta2 Partial Eta2

CA 0.47 0.68

White 0.00 0.02

Black 0.09 0.30

Asian 0.13 0.37

Amerindian 0.00 0.01

State 0.08 0.27

Table 27: ANOVA-based effect sizes. Outcome: S. Predictors: cognitive ability, state, SIREs. Cross-
validated R = .86.



Predictor Eta2 Partial Eta2

CA 0.47 0.71

White 0.00 0.01

Black 0.10 0.34

Asian 0.14 0.42

Amerindian 0.00 0.01

State 0.08 0.30

lat_bins 0.01 0.04

lon_bins 0.00 0.02

precip_bins 0.01 0.04

temp_bins 0.01 0.03

Table 28: ANOVA-based effect sizes. Outcome: S. Predictors: cognitive ability, state, SIREs, discretized
natural geospatial and climatological variables. Cross-validated R = .86.

As can be seen, the three models had approximately equal predictive power (multiple R's .83 to .86) 
and this was mostly due to the predictive power of cognitive ability (47% of the variance in all models, 
corresponding to R = .69). Without the SIRE predictors, State had substantial incremental validity 
(27% of variance; R = .52), but when SIREs were included, it was reduced to a medium to small effect 
(8% variance; R = .28). The environmental predictors had only trivial effects and did not detectably 
increase the R2 when using cross-validation.

9. Does cognitive ability mediate the relationship between SIREs and S?

The central tenet of cognitive sociology is that cognitive ability is an important causal variable to 
explain variation in socioeconomic outcomes for individuals as well as groups of individuals. A 
stronger version of this claim is that cognitive ability explains all the differences in socioeconomic 
outcomes. This view is not tenable at the individual-level because there are known non-cognitive-
ability traits that differ between individuals and (seem to) cause differences in socioeconomic 
outcomes. These traits include conscientiousness which includes facets of orderliness, self-
discipline/self-control and achievement striving; extroversion which includes the facets of assertiveness
and gregariousness; neuroticism/emotional stability which is strongly related to mental health; and 
interests which have an important influence on which education and jobs people seek (Bogg & Roberts,
2004, 2013; De Fruyt & Mervielde, 1999; Dudley, Orvis, Lebiecki, & Cortina, 2006; Lubinski, 2000; 
Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007; Woods & Hampson, 2010).

Just because a trait explains differences in outcomes between individuals does not mean that it also 
explains differences in outcomes between groups. For this to happen, the groups must also differ in the 
trait in question. Men and women, for instance, differ substantially in some aspects of personality and 
in occupational interests and which is likely a large part of the reason why they differ in job types 
(Costa Jr., Terracciano, & McCrae, 2001; Giudice, Booth, & Irwing, 2012; Lippa, 2010; Su, Rounds, & 
Armstrong, 2009; Woods & Hampson, 2010). Guidice et al reported a .89 d for warmth (favoring 



women) and a .54 d for dominance (favoring men); Su et al reported a .93 d for preference for working 
with people over things (favoring women).

With regards to SIRE groups, it is well-known that they differ in average levels of cognitive ability 
(Fuerst, 2014; Roth, Bevier, Bobko, Switzer, & Tyler, 2001), but it is less known whether and if so, 
how much they differ in other traits. A very large meta-analysis found that there are only trivial 
differences in the OCEAN (big five) personality traits between Whites and Blacks in the US (all d's < .
10; (Tate & McDaniel, 2008)). On the other hand, Schmitt et al (2011) found White-Black differences 
of .23 to .33 on five of the six RIASEC scales (see also (Walker & Tracey, 2012)). Based on this 
limited review, it seems that cognitive ability may be more important than the other traits in explaining 
differences in socioeconomic outcome for Whites and Blacks. There is currently insufficient evidence 
to say whether this is also the case for other observed differences, e.g. Whites vs. Asians.

In our previous study (Fuerst & Kirkegaard, 2016a, Section 13; but see also Pesta, 2016; Fuerst & 
Kirkegaard, 2016b) we examined whether (rough estimates of) genomic racial (bio-geographical) 
ancestry had predictive validity beyond (rough estimates of) cognitive ability. In general, we found 
only weak and inconsistent evidence of incremental validity of the genomic ancestry when cognitive 
ability was taken into account. These analyses, however, relied on national- and state-level data and it 
may be that the effects are not (easily) detectable at that level of aggregation. For this reason, it is worth
examining this question at the county-level as well.

Three methods were employed to examine whether cognitive ability mediated the relationship between 
SIREs and S:

1. A simple method where cognitive ability is regressed out of the SIRE variables and the 
residualized SIRE variables are then correlated with S (semi-partial correlations). This was the 
primary method employed in the previous studies.

2. OLS regression with cognitive ability and the SIRE predictors after cognitive ability has been 
regressed out of them. The rationale for this method is that the effects of the SIREs seem more 
clear when analyzed simultaneously rather than individually. This method was not used 
previously because we did not find evidence of incremental validity of using more than one 
demographic predictor. In a comparative model, the (unresidualized) SIREs are entered along 
with cognitive ability with S as the outcome.

3. Path analysis where a number of models of the causal paths are tested.

9.1. Semi-partial correlations

Table 29 shows the semi-partial correlations along with the raw correlations.

S CA White Black Asian Amerindian

S 0.68  0.34 -0.52  0.33 -0.14

CA  0.71  0.59 -0.40 -0.10 -0.13

White  0.16 0.00 -0.47 -0.49 -0.05

Black -0.23 0.00 -0.46 -0.05 -0.09



Asian  0.20 0.00 -0.34  0.06 -0.08

Amerindian -0.02 0.00 -0.20 -0.27  0.01

Table 29: Semi-partial weighted correlations between residualized SIREs and S. Numbers above the
diagonal are the original variables, below the diagonal the residualized variables.

It can be seen that the residualization reduced the correlations by about half except for Amerindian 
which was reduced to near-zero levels. This indicates that much, but not all, of the predictive validity 
of the SIRE predictors comes from their relationship to cognitive ability, consistent with a partial 
mediation model.

9.2. Multiple regression models

Table 30 shows the model betas for the best SIRE model with cognitive ability included as a predictor 
in two versions:

Predictor Beta CI upper CI lower

Raw SIRE predictors

CA 0.46 0.43 0.49

White 0.18 0.15 0.22

Black -0.22 -0.25 -0.19

Asian 0.27 0.24 0.29

Amerindian -0.04 -0.07 -0.02

Residualized SIRE predictors

CA 0.71 0.68 0.73

White 0.15 0.12 0.18

Black -0.19 -0.21 -0.16

Asian 0.27 0.24 0.29

Amerindian -0.04 -0.07 -0.02

Table 30: Model betas for two models. 1: Outcome: S. Predictors: SIREs and cognitive ability. 2:
Outcome: S. Predictors: residualized SIREs and cognitive ability. Model cross-validated R's = .78.

Except for cognitive ability itself (.46 vs. .71), the model betas were very similar. Note that one cannot 
estimate the total R of a model by summing the predictor betas. This is because predictors may be 
correlated and if they are, their validity does not just add up. One can get the independent predictive 
validity of the predictors by converting the linear model to an ANOVA and then calculating the eta 
squared values. Doing so reveals that cognitive ability explained 4.2 times as much variance as did the 
SIRE predictors combined.

9.3. Path models

Three path models were fitted:



1. A pure mediated model. The effects of SIREs on S are 100% mediated by cognitive ability.

2. A mediation model with heterogeneous alternative paths. The SIREs are allowed to have an 
effect on S aside from their effect thru cognitive ability.

3. A mediation model with homogeneous alternative paths. The SIREs are allowed to have an 
effect on S aside from their effect thru cognitive ability but this is thru a common latent 
variable. This model essentially stipulates that whatever it is that explains the relationships of 
SIREs to S that is not thru cognitive ability, but a single other construct.

Figure 20 shows the fitted paths.

The paths found generally mirror the earlier results. In the first model, the SIREs have their usual signs 
but White is stronger than normally and Black and Asian weaker. The S~CA path also has a familiar 
value (.68, the same as the weighted correlation). In the second model, Asian has a notably strong non-

Figure 20: Three path models for modeling the effects of SIREs
and cognitive ability on S.



CA path to S in line with previous results suggesting that Asians do better than one would expect based 
on their cognitive ability (Herrnstein & Murray, 1994). White has a small positive non-CA effect and 
Black a moderate negative non-CA effect. In the third model, S is roughly equally caused by the 
hypothesized non-CA construct and CA which together explain about half the variance in S. The effect 
of White is primarily thru CA while that of Asian is almost exclusively thru non-CA. The relationship 
between Black and S is also mostly thru the hypothetical construct.

Model fit statistics, however, indicated that the last two models had perfect fit and the first model had a 
bad fit according to RMSEA (.38) but decent according to the good fit index (GFI; .990). This probably
indicates that there was a technical problem in fitting the models to the data or that they did not fit the 
data very well. This makes it difficult to interpret the results.

10. Jensen's method

When one analyzes data related to latent variables and one has multiple indicators of the latent 
variables, it is possible to perform a robustness check using Jensen's method (method of correlated 
vectors, (Jensen, 1998)). This method consists of correlating the factor loadings of the indicators with 
the indicators' relationships to the criterion variable. The simple theory behind this procedure is that if 
the latent variable is really related to the criterion variable, then the indicators that measure the latent 
variable better should be more strongly related to the criterion variable. To be sure, this method has 
problems such as that it requires a fair number of indicators which must themselves be representative of
the domain. Furthermore, the method is not always able to distinguish between alternative models 
(Ashton & Lee, 2005). In my opinion, it remains an interesting tool but with unclear interpretation for 
values that are not close to 1 or -1. Note that due to the existence of indicators with negative loadings, a
few modifications have been made to the method which are explained in Kirkegaard (In review).

In the present study, the S factor was treated as a latent variable measured by 28 indicator variables. 
The criteria variables are cognitive ability (not treated as a latent variable in this study) and the SIRE 
variables. Figure 21 shows the relationship between S factor loadings and the indicators' correlations to
cognitive ability.



We see that there is a strong relationship between the indicators' relationship to cognitive ability and 
their loading on S, indicating that cognitive ability is related to the latent S factor itself and not just the 
other variance.

Using Jensen's method on the SIRE variables is more tricky because one must decide whether just to 
use the zero-order correlations or the regression beta weights. In view of the finding that the effects of 
the SIRE predictors was to some degree independent, it seems best to use the regression method. To do 
this, every indicator was regressed on the four SIRE predictors (White, Black, Asian, Amerindian) and 
the beta values saved. These values were then correlated with the S loadings of each indicator. Figure
22 shows the results.

Figure 21: Jensen's method for S and cognitive ability. Note that
negative loadings are reversed.



We do not see strong correlations altho there are slight correlations in the expected directions (r's = .10, 
-.17, .34, -.17). To see whether this near-zero finding was due to the use of a novel method, I also used 
the simpler method of correlating each indicator with the SIRE predictors. This gave slightly stronger 
results but still not close to those seen for cognitive ability (r's .23, -.45, .24, -.12). These findings seem 
to show that there are substantial relationships between the SIREs and the S indicators that are not just 
related to the S factor as argued by e.g. Pesta (2016).

11. Discussion and conclusion

The results indicated that there is a clear S factor in the US at the county-level. This finding was very 
robust to variations in methods and controls. As expected, the S factor had a strong correlation to 
cognitive ability (.68, weighted correlation) as has been found in both the US at the state-level, in many
other countries and at the national-level.

With regards to the relationships between demographics and outcomes, the results were not surprising. 
The more Whites and Asians in a county, the higher the cognitive ability and S of that county. 
Reversely, the more Blacks, Hispanics or Amerindians, the lower. These are the expected findings 
based on the already existing knowledge of individual-level, county-level, state-level and country-level 
outcomes (Beaver & Wright, 2011; Fuerst & Kirkegaard, 2016a, 2016b). Perhaps unexpectedly, SIRE 
homogeneity was found to have non-linear but generally negative effects in both single (correlation) 
and multiple regression analysis. This is due to counties with very high White% and medium to low S 
scores. The explanation for this pattern is probably related to brain drain and intra-White regional 
differences (Fischer, 1989).

The present study relied on self-identified race/ethnicity, not genomic estimates of racial 
(biogeographical) ancestry. If one is interested in the effects of racial ancestry on S, this has several 
problems. First, some SIRE groups consist of persons of mixed ancestry. For instance, Hispanics are of 

Figure 22: Jensen's method for SIRE predictors and S.



(mostly Iberian) European, Amerindian and sometimes African ancestry (Bryc, Durand, Macpherson, 
Reich, & Mountain, 2015). Second, members of the same SIRE group living in different areas vary in 
their genomic ancestry. For instance, Blacks living in Alabama have less European ancestry than 
Blacks living in Washington (17% vs. 30%, based on 23andme.com customer data; (Bryc et al., 2015, 
Table S2)). A previous study has shown that within SIRE variation in racial ancestry is related to 
outcomes in mostly consistent ways at the state-level (Kirkegaard & Fuerst, 2016). It may be possible 
to obtain county-level genomic estimates in the future that could further test genetic causal models of 
social inequality.

Multiple natural environmental predictors were examined, but in general they did not add much 
incremental validity. This is despite the fact that the models allowed for non-linear effects of these. The
odd patterns revealed by the non-linear models may reflect the fact that the natural environmental 
predictors are confounded with other variables.

The spatial control analyses found that the SIREs were not spurious causes. There is some simulation 
evidence that suggests that these methods work in the sense that when used on relatively simple 
datasets where SAC has been added, the control methods are able to distinguish between true and 
spurious causes (Kirkegaard, 2015). However, these methods are experimental and in need of more 
extensive testing. For this reason, these results should not be seen as final for this dataset. Others are 
encouraged to analyze the compiled dataset further.

Multilevel analyses generally did not reveal any surprises. The S factor was very robust to being 
analyzed within each state and at the state-level. There was some evidence that the differences to the 
main analyses were due to 'sampling error'. The SIRE model was also found to be robust when 
analyzed within each state.

Analyses of the fixed-effects of states found that these had little incremental validity once SIREs were 
included in the models. Other analyses that find effects of states may in fact be finding cryptic effects 
of SIREs.

Is the relationship between SIREs and S mediated by cognitive ability? This question was examined 
with a variety of methods, which also resulted in a variety of results spanning from “yes, mostly” to 
“perhaps half”. Previous analysis revealed that statistically controlling for the effects of SIREs is 
difficult and that environmental effects that appear in such models can be overestimated (Kirkegaard & 
Fuerst, 2016). It is possible to get around this problem if one could obtain socioeconomic and cognitive
ability at the county level that is broken down by SIRE group. Such data may be available in the census
and if so, should be used in a future study.

The application of Jensen's method revealed that the relationship between cognitive ability and the S 
scores was probably due to the latent S factor. However, it also revealed that the relationship between 
the S scores and the SIREs were not strongly attributable to the latent S factor. In other words, after 
equalizing for S, there remains substantial SIRE differences in S indicators. This was also found by 
Pesta (2016).

The school-district level dataset used in the present study has a much larger sample size (N=17,886). It 
contains demographic (SIRE) data, but not many socioeconomic variables. It one could obtain them, it 



may be a good dataset to analyze in a future study.

It should be remembered that statistical patterns may be very different across levels and for this reason, 
one must be cautious about inferring patterns between levels (ecological fallacy). In general, however, 
results from analyses at many different levels tend to agree for this area of research.
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