Submitted: 22^{nd} of April 2014Published: 12^{th} of May 2014

Educational attainment, income, use of social benefits, crime rate and the general socioeconomic factor among 70 immigrant groups in Denmark

Emil O. W. Kirkegaard*

John Fuerst

Abstract

We obtained data from Denmark for the largest 70 immigrant groups by country of origin. We show that three important socioeconomic variables are highly predictable from the Islam rate, IQ, GDP and height of the countries of origin. We further show that there is a general immigrant socioeconomic factor and that country of origin national IQs, Islamic rates, and GDP strongly predict immigrant general socioeconomic scores.

Keywords: National IQs, group differences, country of origin, Denmark, immigration

1 Introduction

In our previous paper[1] we introduced the spatial transferability hypothesis, which is the proposition that when people migrate to other countries, they retain their traits, whether personality, cognitive or other. Regarding National IQs, a corollary of this hypothesis is that the known correlates of *g* are also retained such as average socioeconomic level. We have previously shown that the spatial transferability hypothesis holds with regards to fertility and crime rates in Denmark[2], crime rates in Norway[3], SAT and GPA scores at elite universities in the U.S., and PISA scores throughout the OCED [4, 5]. In this paper we examine new data from Denmark concerning educational level, income and use of social benefits.

2 Datasets and methods

We purchased three new datasets for Denmark from the official Danish statistics agency (Danmarks Statistik, http://dst.dk). All datasets concern the 71 largest immigrant groups by country of origin that one of us previously examined with respect to crime rates[2]. All datasets contain data from 2012 only. Dataset 1 contains information about the highest level of formal education reached by immigrant groups and is divided into age groups (15-19, 20-29, 30-39, 40-49, 50-59, >60). Dataset 2 contains the mean income levels per group by age groups. Dataset 3 contains the percentage of the groups who are on social benefits by age groups.

Our analytic strategy was similar to that used in previous studies. First, we extracted the data of interest and imported it into SPSS where we performed the statistical analyses. From the data files, we extracted: mean income levels, the percentage who have advanced tertiary education ("lang videregående uddannelse"), the percentage who had only basic schooling ("grundskole"), and the percentage on social benefits ("offentlig forsørgelse"). This was done for each age group.

The predictor variables were:

- Lynn and Vanhanen's national IQs as given in [6] with an estimate of the former Yugoslavia's IQ from [7]
- 2. national GDPs per capita from the International Monetary Fond (2013) via Wikipedia[8, 9]
- 3. national rates of belief in Islam from Pew Research via Wikipedia[10, 11]
- 4. the average heights from Wikipedia $[12]^1$

^{*} University of Aarhus, Department of Culture and Society. E-mail: emil@emilkirkegaard.dk

¹ As in previous studies, we picked the best and newest studies,

Table 1: Correlational matrix for predictors and basic schooling. The variable measures the proportion of an immigrant population who has attained only basic schooling.

Intercorrelatio	ons. Pearson										
above diagon	al, Spearman					Basic_school	Basic_school	Basic_school	Basic_school	Basic_school	Basic_school
below.		LV2012IQ	GDPIMF2013	Islam	Height	_15_19	_20_29	_30_39	40_49	_50_59	_60plus
LV2012IQ		1	.612	486	.548	127	544	488	465	418	215
	Sig. (2-tailed)		.000	.000	.000	.298	.000	.000	.000	.000	.073
	N	205	182	68	53	69	70	70	70	70	70
GDPIMF2013		.719	1	414	.643	173	496	522	541	480	242
	Sig. (2-tailed)	.000		.001	.000	.172	.000	.000	.000	.000	.052
	Ν	182	186	65	52	64	65	65	65	65	65
Islam		571	453	1	421	.221	.592	.587	.489	.508	.384
	Sig. (2-tailed)	.000	.000		.002	.075	.000	.000	.000	.000	.001
	N	68	65	68	53	66	67	67	67	67	67
Height		.578	.675	325	1	036	467	476	500	472	222
	Sig. (2-tailed)	.000	.000	.018		.802	.000	.000	.000	.000	.113
	Ν	53	52	53	53	51	52	52	52	52	52
Basic_schoo	I	188	147	.085	004	1	.300	.220	.155	.136	.079
_15_19	Sig. (2-tailed)	.121	.246	.495	.979		.012	.069	.204	.264	.521
	Ν	69	64	66	51	69	69	69	69	69	69
Basic_schoo	I	620	554	.549	561	.262	1	.854	.782	.693	.488
_20_29	Sig. (2-tailed)	.000	.000	.000	.000	.029		.000	.000	.000	.000
	Ν	70	65	67	52	69	70	70	70	70	70
Basic_schoo	I	699	665	.574	508	.233	.844	1	.915	.838	.576
_30_39	Sig. (2-tailed)	.000	.000	.000	.000	.054	.000		.000	.000	.000
	Ν	70	65	67	52	69	70	70	70	70	70
Basic_schoo	I	674	650	.547	582	.116	.773	.898	1	.923	.710
_40_49	Sig. (2-tailed)	.000	.000	.000	.000	.341	.000	.000		.000	.000
	Ν	70	65	67	52	69	70	70	70	70	70
Basic_schoo	I	571	576	.484	506	.095	.675	.802	.909	1	.814
_50_59	Sig. (2-tailed)	.000	.000	.000	.000	.439	.000	.000	.000		.000
	N	70	65	67	52	69	70	70	70	70	70
Basic_schoo	I	352	302	.327	230	.056	.494	.556	.702	.769	1
_60plus	Sig. (2-tailed)	.003	.014	.007	.100	.650	.000	.000	.000	.000	
	N	70	65	67	52	69	70	70	70	70	70

Table 2: Correlational matrix for predictors and long tertiary education. The variable measures the proportion of an immigrant population who has attained tertiary education.

Intercorrelatio above diagon	ns. Pearson al, Spearman					Long_tert_ed	Long_tert_ed	Long_tert_ed	Long_tert_ed	Long_tert_ed
below.		LV2012IQ	GDPIMF2013	Islam	Height	u_20_29	u_30_39	u_40_49	u_50_59	u_60plus
LV2012IQ		1	.612	486	.548	.385	.459	.547	.380	.037
	Sig. (2-tailed)		.000	.000	.000	.001	.000	.000	.001	.762
	Ν	205	182	68	53	70	70	70	70	70
GDPIMF2013		.719	1	414	.643	.402	.528	.517	.393	.024
	Sig. (2-tailed)	.000		.001	.000	.001	.000	.000	.001	.848
	Ν	182	186	65	52	65	65	65	65	65
Islam		571	453	1	421	432	543	493	357	176
	Sig. (2-tailed)	.000	.000		.002	.000	.000	.000	.003	.154
	Ν	68	65	68	53	67	67	67	67	67
Height		.578	.675	325	1	.355	.437	.516	.330	.120
	Sig. (2-tailed)	.000	.000	.018		.010	.001	.000	.017	.397
	Ν	53	52	53	53	52	52	52	52	52
Long_tert_ed		.535	.520	474	.424	1	.740	.471	.266	.132
u_20_29	Sig. (2-tailed)	.000	.000	.000	.002		.000	.000	.026	.277
	Ν	70	65	67	52	70	70	70	70	70
Long_tert_ed		.559	.530	454	.437	.848	1	.760	.594	.411
u_30_39	Sig. (2-tailed)	.000	.000	.000	.001	.000		.000	.000	.000
	Ν	70	65	67	52	70	70	70	70	70
Long_tert_ed		.646	.580	522	.528	.689	.837	1	.801	.491
u_40_49	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000	.000
	Ν	70	65	67	52	70	70	70	70	70
Long_tert_ed		.525	.426	402	.388	.456	.669	.820	1	.589
u_50_59	Sig. (2-tailed)	.000	.000	.001	.005	.000	.000	.000		.000
	Ν	70	65	67	52	70	70	70	70	70
Long_tert_ed		.055	017	162	.011	.288	.428	.501	.560	1
u_60plus	Sig. (2-tailed)	.651	.894	.189	.941	.016	.000	.000	.000	
	Ν	70	65	67	52	70	70	70	70	70

3 Educational attainment

Correlational analysis for the proportion who have only basic schooling is shown in Table 1, while Table 2 shows the analysis for the proportion who have advanced tertiary degrees.

Regarding basic schooling, it is clear that age matters. First, at age 15-19 most people have not had enough time to finish secondary education and so clear patterns do not yet emerge. Second, the correlations are low for the older groups probably because they immigrated too late to the country and so were not able to take advantage of the Danish educational system which presumably in many cases is of higher quality than the ones in the home countries. The picture is much the same with regards to tertiary degree rates; regarding this variable, there was no data for the first age group as no one in that age range was old enough to attain a tertiary degree.

From the correlations it was apparent that there might be a general education factor. We performed principle component analysis (PCA) to extract latent variables. The component loadings are shown in Table 3. The first component was a large general factor while PC2 was not readily interpretable; PC2 probably represents a nonsense factor loaded with statistical noise. Kaiser-Meyer-Olkin (KMO) was .842, very good. Bertlett's test was p<.000, good.

The correlations with the predictors are shown in Table 4. All four predictors performed similarly for the PC1 variable which is surprising given that height seems to have no conceptual relevance to education. Correlations with PC2 were in the same direction but smaller.

4 Income

The correlations with the predictors and with average income levels are shown in Table 5. It is apparent that early income levels are not very predictable yet that later incomes are. Oddly national IQs did not predict income after age 60, but GDP and Islam continued to have sizable correlations. As might be expected from the conceptual link, GDP was the strongest predictor of income levels, but height also performed well.

As before we did a PCA to extract latent variables. 2 components were extracted. The first one was interpreted as a latent middle adulthood income variable with high loadings on income after age 30. The second was interpreted as an early income factor indexing the

Table 3	: Factor	loadings	of income	variables.
---------	----------	----------	-----------	------------

	Comp	onent
	1	2
Basic_school _15_19	.210	.533
Basic_school _20_29	.846	.373
Basic_school _30_39	.917	.170
Basic_school _40_49	.922	053
Basic_school _50_59	.917	174
Basic_school _60plus	.770	453
Long_tert_ed u_20_29	587	614
Long_tert_ed u_30_39	849	301
Long_tert_ed u_40_49	892	.056
Long_tert_ed u_50_59	813	.346
Long_tert_ed u 60plus	590	.527
Var%	61.387328	14.1677

incomes of those who left school early to earn money. Factor loadings are shown in Table 6. KMO was .645, okay. Bartlett's test was p<.000, good. Correlations with predictors are shown in Table 7.

While latent early income was not very predictable, latent adult income was highly so. Perhaps not surprisingly, national GDP was the strongest correlate of the latent migrant income variable.

5 Use of social benefits

Social benefits in Denmark include both a stipend for students and various payouts for people who for some reason cannot or won't work and receives money from the state to support themselves. The supplementary material has a detailed description of this variable (in Danish).

Like before, we performed a correlation analysis with the variables for each age group and the predictors. It is shown in Table 8.

Height is not a good predictor of the use of social benefits, IQ and GDP were both good predictors and Islam came out ahead again. The variable intercorrelations were high indicating a latent variable. We used PCA to extract latent variables. Loadings are shown in Table 10.

and merged data for males and females using z-scores to obtain a sex-neutral average height for all available countries. See datafile for details. There is still a need for a meta-analysis that compiles average heights by country on a better basis than this.

Intercorrelations. Pearson above diagonal. Spearman							
below.	al, opcannan	LV2012IQ	GDPIMF2013	Islam	Height	PC1EdAtt	PC2EdAtt
LV2012IQ		1	.612	486	.548	494	223
	Sig. (2-tailed)		.000	.000	.000	.000	.066
	N	205	182	68	53	69	69
GDPIMF2013		.719	1	414	.643	527	217
	Sig. (2-tailed)	.000		.001	.000	.000	.086
	N	182	186	65	52	64	64
Islam		571	453	1	421	.570	.215
	Sig. (2-tailed)	.000	.000		.002	.000	.083
	N	68	65	68	53	66	66
Height		.578	.675	325	1	492	111
	Sig. (2-tailed)	.000	.000	.018		.000	.438
	Ν	53	52	53	53	51	51
PC1EdAtt		641	599	.530	561	1	.000
	Sig. (2-tailed)	.000	.000	.000	.000		1.000
	N	69	64	66	51	69	69
PC2EdAtt		265	261	.104	172	.016	1
	Sig. (2-tailed)	.028	.037	.406	.226	.898	
	N	69	64	66	51	69	69

Table 4: Predictors and the latent educational attainment variable.

Table 5: Predictors and income.

Intercorrelatio	ons. Pearson										
above diagon	ial, Spearman	1.1/2012/0		lalam	Lloight	Income_15_	Income_20_	Income_30_	Income_40_	Income_50_	Incomo 60
LV2012IO		1	612 612	- 496	Fielgiii 5/9	- 093	_ 127	59	49	39	064
LV20121Q	Sig (2 toiled)		.012	400	.040	003	127	.040	.000	.473	.004
	Sig. (2-tailed)	205	.000	.000	.000	.094	.237	.000	.000	.000	.014
CDRIME2012	IN	205	102	414	513	210	205	70	70	70	260
GDFIMF2013	Sig. (2 toiled)	.719	'	414	.043	210	395	.004	.735	.099	.300
	Sig. (2-tailed)	.000	196	.001	.000	.170	.001	.000	.000	.000	.005
lelam	N	- 571	- 453	1	- 421	091	- 049	- 609	- 606	- 599	- 564
Islam	Sig (2-tailed)	571	400	'	421	612	043	000	000	530	304
	N	88	.000	68	.002	.012	.052	.000	.000	.000	.000
Height		578	675	- 325	1	- 014	- 087	474	453	325	167
	Sig. (2-tailed)	000	.000	.018		942	542	000	001	019	250
	N	53	52	53	53	30	52	52	52	52	49
Income 15		147	287	.205	046	1	.633	.075	065	110	208
19	Sig. (2-tailed)	.340	.073	.192	.809		.000	.629	.673	.476	.197
	N	44	40	42	30	44	44	44	44	44	40
Income 20		166	356	006	126	.664	1	.153	077	179	060
29	Sig. (2-tailed)	.173	.004	.962	.373	.000		.210	.530	.141	.638
	N	69	64	67	52	44	69	69	69	69	64
Income_30_		.666	.654	493	.514	028	.147	1	.915	.822	.557
39	Sig. (2-tailed)	.000	.000	.000	.000	.857	.227		.000	.000	.000
	N	70	65	67	52	44	69	70	70	70	65
Income_40_		.674	.715	550	.491	204	087	.906	1	.919	.612
49	Sig. (2-tailed)	.000	.000	.000	.000	.185	.475	.000		.000	.000
	Ν	70	65	67	52	44	69	70	70	70	65
Income_50_		.599	.664	489	.327	261	203	.778	.909	1	.695
59	Sig. (2-tailed)	.000	.000	.000	.018	.087	.095	.000	.000		.000
	N	70	65	67	52	44	69	70	70	70	65
Income_60		.225	.351	484	.143	332	083	.529	.665	.695	1
	Sig. (2-tailed)	.072	.006	.000	.326	.036	.513	.000	.000	.000	
	N	65	60	62	49	40	64	65	65	65	65

Table 6: Factor loadings of income variables.

	Comp	onent
	1	2
Income_15_19	150	.892
Income_20_29	080	.904
Income_30_39	.916	.268
Income_40_49	.975	.052
Income_50_59	.976	020
Income_60	.866	081
Variance Explained	58.71%	28.24%

PCA resulted in only one factor. KMO was .817, very good. Bartlett's test was p<.000, good. The correlations with predictors are shown in Table 9. Islam was a very good predictor of use of social benefits with national IQ and GDP coming in about equally at second. Height was the weakest again.

6 General socioeconomic factor

In a previous paper [3], one of us speculated that there might be an immigrant general socioeconomic factor. That would be the case if there were correlations between the various socioeconomic variables. It is not immediately obvious that this will be true. Perhaps some immigrant groups have high relatively high crime rates but also have relatively high average incomes (like men compared with women). In the Norwegian data, this idea could not be properly tested because there were only two different socioeconomic variables making PCA impossible.

The present study has adequate data to answer the question. We ran a PCA on all the manifest variables previously mentioned as well as the two crime variables for age groups 15-19 and 20-29 from the previous study. The results of the PCA are shown in Table 12. PC1 was a large general factor while the other factors were not clearly interpretable. KMO was .728, good, and Bartlett's was p<.000, good.

Table 12 shows the predictors' correlations with the general socioeconomic factor. Islam was a very good predictor while IQ and GDP were merely good and height still good but somewhat worse. However, due to the number of missing values for some countries, we reran the PCA without the four variables that had the lowest sample size (income 15-19, social benefits 15-19, social benefits >60). This increased the sample size from 31 to 63. The correlation between the two components was .999 so clearly the removed variables were not important. Correlations with predictors did not change much with the new PC (also shown in Table 12). The appendix has a list of the 63 countries and their factor scores.

Figure 1: Regression plot for Islam on the general socioeconomic factor.

Figure 2: Regression plot for IQ on the general socioeconomic factor.

7 Multiple regression

We tested whether predictors could be combined to improve the prediction of the general socioeconomic factor with multiple regression. Results are shown in Table 13.

Like previously found in the studies of crime in Denmark and Norway[2, 3], IQ and GDP did not show independent effects. This is to be expected if there is a strong causal relationship between the two (in either direction or both). Some regression plots of interest are shown in Figures 1 - 5. The plots show the general socioeconomic factor and various predictors which are mentioned in the captions below the plots.

8 Partial correlations

Another way to test the robustness of two variables is to calculate the partial correlations controlling for

Intercorrelations. Pearson above diagonal. Spearman						Latent adult	Latent early
below.		LV2012IQ	GDPIMF2013	Islam	Height	income	income
LV2012IQ		1	.612	486	.548	.565	.043
	Sig. (2-tailed)		.000	.000	.000	.000	.793
	Ν	205	182	68	53	40	40
GDPIMF2013	i	.719	1	414	.643	.820	221
	Sig. (2-tailed)	.000		.001	.000	.000	.196
	Ν	182	186	65	52	36	36
Islam		571	453	1	421	698	107
	Sig. (2-tailed)	.000	.000		.002	.000	.523
	N	68	65	68	53	38	38
Height		.578	.675	325	1	.540	002
	Sig. (2-tailed)	.000	.000	.018		.003	.992
	Ν	53	52	53	53	28	28
Latent_adult_	_	.661	.697	613	.580	1	.000
income	Sig. (2-tailed)	.000	.000	.000	.001		1.000
	Ν	40	36	38	28	40	40
Latent_early_		019	195	.002	034	035	1
income	Sig. (2-tailed)	.908	.254	.991	.862	.831	
	N	40	36	38	28	40	40

Table 7: Predictors and the latent income variables.

Table 8: Predictors and use of social benefits.

Intercorrelatio above diagon	ons. Pearson al, Spearman					Social_benefi	Social_benefi	Social_benefi	Social_benefi	Social_benefi	Social_benefi
below.		LV2012IQ	GDPIMF2013	Islam	Height	ts_16_19	ts_20_29	ts_30_39	ts_40_49	ts_50_59	ts_60plus
LV2012IQ		1	.612	486	.548	424	492	433	482	465	429
	Sig. (2-tailed)		.000	.000	.000	.005	.000	.000	.000	.000	.001
	Ν	205	182	68	53	43	69	70	70	70	54
GDPIMF2013		.719	1	414	.643	306	469	403	438	486	536
	Sig. (2-tailed)	.000		.001	.000	.059	.000	.001	.000	.000	.000
	N	182	186	65	52	39	64	65	65	65	50
Islam		571	453	1	421	.533	.670	.704	.710	.684	.747
	Sig. (2-tailed)	.000	.000		.002	.000	.000	.000	.000	.000	.000
	Ν	68	65	68	53	41	67	67	67	67	52
Height		.578	.675	325	1	276	250	173	251	192	293
	Sig. (2-tailed)	.000	.000	.018		.156	.074	.221	.073	.172	.059
	Ν	53	52	53	53	28	52	52	52	52	42
Social_benef	i	457	338	.463	192	1	.776	.687	.629	.613	.533
ts_16_19	Sig. (2-tailed)	.002	.035	.002	.328		.000	.000	.000	.000	.002
	N	43	39	41	28	43	43	43	43	43	32
Social_benef	i	634	584	.624	255	.730	1	.950	.909	.892	.776
ts_20_29	Sig. (2-tailed)	.000	.000	.000	.068	.000		.000	.000	.000	.000
	Ν	69	64	67	52	43	69	69	69	69	53
Social_benef	i	547	491	.600	178	.720	.947	1	.963	.933	.848
ts_30_39	Sig. (2-tailed)	.000	.000	.000	.207	.000	.000		.000	.000	.000
	Ν	70	65	67	52	43	69	70	70	70	54
Social_benef	i	683	646	.644	404	.797	.888	.903	1	.963	.883
ts_40_49	Sig. (2-tailed)	.000	.000	.000	.003	.000	.000	.000		.000	.000
	N	70	65	67	52	43	69	70	70	70	54
Social_benef	i	635	580	.611	252	.755	.837	.843	.934	1	.926
ts_50_59	Sig. (2-tailed)	.000	.000	.000	.072	.000	.000	.000	.000		.000
	N	70	65	67	52	43	69	70	70	70	54
Social_benef	i	487	505	.587	197	.620	.713	.772	.820	.866	1
ts_60plus	Sig. (2-tailed)	.000	.000	.000	.211	.000	.000	.000	.000	.000	
	N	54	50	52	42	32	53	54	54	54	54

Intercorrelations. Pearson above diagonal, Spearman below		LV2012IQ	GDPIMF2013	Islam	Heiaht	PC1SocialBe nefits
LV2012IO		1	612	- 486	548	- 580
27201210	Sig. (2-tailed)		.000	.000	.000	.001
	N	205	182	68	53	32
GDPIMF2013		.719	1	414	.643	511
	Sig. (2-tailed)	.000		.001	.000	.005
	N	182	186	65	52	29
Islam		571	453	1	421	.850
	Sig. (2-tailed)	.000	.000		.002	.000
	N	68	65	68	53	31
Height		.578	.675	325	1	403
	Sig. (2-tailed)	.000	.000	.018		.063
	N	53	52	53	53	22
PC1SocialE	Зе	658	520	.653	377	1
nefits	Sig. (2-tailed)	.000	.004	.000	.084	
	N	32	29	31	22	32

Table 9: Predictors and the latent social benefit variables.

 Table 10: Factor loadings for social benefits variables.

	Component
	1
Social_benefits_16_19	.770
Social_benefits_20_29	.956
Social_benefits_30_39	.982
Social_benefits_40_49	.981
Social_benefits_50_59	.972
Social_benefits_60plus	.906
Variance Explained	86.67%

Figure 4: Regression plot for Islam+IQ on the general socioeconomic factor.

Figure 3: Regression plot for GDP on the general socioeconomic factor.

Figure 5: Regression plot for Islam+GDP on the general socioeconomic factor.

Table 11: Factor loadings of all socioeconomic variables.

		Component							
	1	2	3	4					
Social_benefits_16_19	.585	.482	.160	.063					
Social_benefits_20_29	.881	.325	.191	.106					
Social_benefits_30_39	.890	.361	.187	.064					
Social_benefits_40_49	.899	.313	.202	050					
Social_benefits_50_59	.914	.217	.262	104					
Social_benefits_60plus	.907	.010	.239	088					
All_crime_age_15_19	.848	.158	.178	.033					
All_crime_age_20_29	.889	.157	.230	.024					
Income_15_19	.277	565	.465	.464					
Income_20_29	.040	597	.591	.042					
Income_30_39	756	409	.262	.129					
Income_40_49	832	297	.100	.173					
Income_50_59	875	214	033	.258					
Income_60	837	124	102	.234					
Basic_school_15_19	.114	.437	593	.481					
Basic_school_20_29	.859	009	327	.207					
Basic_school_30_39	.963	059	123	006					
Basic_school_40_49	.838	361	276	157					
Basic_school_50_59	.761	442	298	235					
Basic_school_60plus	.616	601	330	146					
Long_tert_edu_20_29	689	.028	.062	568					
Long_tert_edu_30_39	850	.198	.092	313					
Long_tert_edu_40_49	805	.468	.064	124					
Long_tert_edu_50_59	681	.585	.115	002					
Long_tert_edu_60plus	487	.680	.060	.143					
Variance Explained	58.32%	14.40%	7.14%	5.03%					

other variables. Specifically, we wanted to know whether the validity of IQ was due to Islamic countries having low IQs or whether it had independent validity. Results are shown in Table 14. The predictive validity of national IQs and GDPs cannot be explained as being wholly due to the indirect effects of Islam nor can Islam's predictive validity be explained as being wholly due to IQ and GDP.

 Table 14: Partial correlations.

Predictor	Controlling for	r ^a
IQ	Islam	-0.487
GDP	Islam	-0.592
Islam	IQ, GDP	0.67

^a With general socioeconomic factor.

9 Pearson vs. Spearman correlations

We note that while other predictors tended to outperform national IQs with Pearson correlations, the Spearman correlations were systematically higher often making national IQs the best predictor. The scatter plots do seem to indicate some non-linearity for IQ as the worst performing groups have IQs in the mid 80s.

Figure 6: Regression plot for Islam in MENAP and non-MENAP countries for the general socioeconomic factor.

Figure 7: Regression plot for Islam on the general socioeconomic factor for Europeans vs. non-Europeans.

10 The predictive ability of Islam

A reviewer suggested that Islam's predictive ability is due to other facts having to do with the MENAP countries (Middle East, North Africa, Pakistan[13]).

There are different ways to test this hypothesis. One idea is to limit the sample to MENAP and non-MENAP sets to see whether Islam has predictive ability in these. It turns out that it does as seen in Figure 6. The r's for MENAP and non-MENAP are .314 (N=13) and .593 (=48) respectively.

One can also try the same but for other regions. Below are regression plots in Figures 7 and 8 show that Islam is still a predictor of worse socioeconomic performance in Denmark when looking European vs. non-European countries (r's = .688 and .700, N's = 30 and 31) and sub-Saharan countries vs. non-sub-Saharan countries (r's = .914 and .776, N's = 7 and 54).

Intercorrelatio	ns. Pearson					BC1Conorol	DC1Conorol
below.	ai, opeannan	LV2012IQ	GDPIMF2013	Islam	Height	SES31	SES63
LV2012IQ		1	.612	486	.548	624	583
	Sig. (2-tailed)		.000	.000	.000	.000	.000
	Ν	205	182	68	53	31	63
GDPIMF2013		.719	1	414	.643	664	705
	Sig. (2-tailed)	.000		.001	.000	.000	.000
	N	182	186	65	52	28	58
Islam		571	453	1	421	.824	.776
	Sig. (2-tailed)	.000	.000		.002	.000	.000
	N	68	65	68	53	30	61
Height		.578	.675	325	1	551	525
	Sig. (2-tailed)	.000	.000	.018		.008	.000
	Ν	53	52	53	53	22	48
PC1General SES31		725	693	.643	661	1	.999
	Sig. (2-tailed)	.000	.000	.000	.001		.000
	N	31	28	30	22	31	31
PC1General		735	779	.629	596	.991	1
SES63	Sig. (2-tailed)	.000	.000	.000	.000	.000	
	N	63	58	61	48	31	63

 Table 12: Predictors and the general socioeconomic latent variable.

Table 13: Multiple regression results.

Model	R	R ²	R ² adjusted
Islam+IQ+GDP+height	.844	.712	.685
Islam+IQ+GDP	.845	.714	.698
Islam+IQ	.825	.680	.669
Islam+GDP	.845	.713	.703
IQ+GDP+height	.735	.540	.508
IQ+GDP	.710	.505	.487
IQ+height	.628	.395	.368
GDP+height	.734	.539	.518
IQ	.583	.340	
GDP	.705	.497	
Islam	.776	.601	

Figure 8: Regression plot for Islam on the general socioeconomic factor for sub-Saharan Africans vs. non-sub-Saharan Africans.

Another idea is to code countries by region and then enter this as well into multiple regression and see how the beta-coefficients come out. If there is something special about the MENAP countries, then the region variable will come out with a sizable co-efficient. Results are shown in Table 15. As one can see, the variable for MENAP is not sizable nor is it close to significance, and neither are the other regional variables.

Table 15: Multiple regression with world regions and Is-lam on the general socioeconomic factor in Denmark.

R	R Square	Adjusted R Square	Std. Error of the Estimate		
.849ª	.722	.696	.53795		
Model	Unstandardize	d Coefficients	Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
(Constant)	2.606	1.236		2.108	.040
Islam	.011	.004	.421	2.700	.009
LV2012IQ	033	.015	323	-2.182	.033
IsAsian	.467	.370	.144	1.264	.212
IsEuropean	153	.331	079	462	.646
ISMENAP	.475	.408	.201	1.163	.250

Dependent Variable: PC1GeneralSES63

So it seems that the predictive ability of Islam is quite robust for this dataset.

11 Discussion and conclusion

We have shown that how well an immigrant group does in 4 different areas of society is to a high degree predictable from country of origin factors. Furthermore, we have shown that these can be seen as part of a more general socioeconomic factor that broadly measures how well a group does in Denmark.

One might wonder what the effects of migrant generation are. The datasets employed here do not break the variables down by immigrant generation. However, the reports *Immigrants in Denmark 2013 (Invandrere i Danmark 2013[14]*) and *PISA Ethnic 2012 (PISA Etnisk 2012[15]*) do break down some variables per generation (first and second). The first report does not group immigrants by their country of origin, but by macro-origin: western vs. non-western. Perhaps surprisingly, crime rates are higher in the second generation as shown in Figure 9.

Figure 9: Crime rate for men per macro-origin, generation and age group, 2012. Adapted from Figure 5.3 in [14].

However, employment rate and percentage on social benefits improves from the first to second generation without reaching native levels see Figure 10 and 11.

Figure 10: Employment rate by macro-origin and generation. Adapted from Figure 2.3 in [14].

Figure 11: Percentage on social benefits by macro-origin, age group and generation. Adapted from Figure 4.1 in [14]

In the second report, average PISA scores by immigrant generation are reported as shown in Table 16. The scores improve about 20 points from first to second generation, but are still 61 points below the scores of children of Danish origin. This should be seen in light of the estimated IQ of 89.9 for the total immigrant population in Demark[7], which is about .67 standard deviations lower than Native Danish IQ. The PISA standard deviation in Denmark is around 80, so the standardized difference between second gen. immigrants and Danish origin natives is about .76.

Table 16: PISA scores by generation and origin. Adapted from Table 2.2 in [15]

Origin	PISA Score
All origins	500
Danish origin	508
First gen. immigrants	428
Second gen. immigrants	447

There is not yet reliable data for third generation immigrants due to small samples[14].

11.1 Future studies

Future studies should replicate the analyses done here, especially with regards to the existence of an immigrant general socioeconomic factor. It is known that Norway has the needed data, so it should be possible to buy them and replicate the analysis.

Further analysis should check whether Islam predicts performance in countries very different from Denmark (a mostly atheistic, nominally Christian country), e.g. Asian or South American countries.

One of our findings was that national rates of belief in Islam robustly predicted poor migrant socioeconomic outcomes. One interpretation of this association is simply that Islamic belief is directly causally related to poorer outcomes. This need not be the case, or course. Regarding crime, for example, a reviewer suggested another explanation. In most Muslim societies, the state has less effectively monopolized the use of violence, with the result that every adult male is expected to use violence as a legitimate way to resolve personal disputes and to defend "honor" or "face." Muslim immigrants thus tend to be more willing to commit violent acts that are criminalized in Western societies, particularly if these acts are targeted against non-kin. We were unable to test this and other interesting hypotheses and so remain agnostic as to the cause of the associations.

11.2 Error sources

The crime data used spanned multiple years (2000-2012) while the three new datasets concern 2012 data only. This might introduce error.

Lynn and Vanhanen's national IQs, while overall well validated, are estimates based on data from numerous years and are probably not exactly representative of some of the various countries' current average IQs.

Given our present data set, there is no way to detect or correct for selective migration which can both increase and decrease correlations.

Principle components analysis tends to overestimate the amount of variance explained by the latent trait, so the percents explained might be slightly inflated relative to the values which would be derived using other methods. [16].

12 Acknowledgment and funding

We thank Julia Reenberg from Statistics Denmark (Danmarks Statistik) for help with obtaining the data.

Richard Lynn supplied a research grant of 12,500 DKK which was paid to Statistics Denmark to obtain the datasets. We are grateful and because of this we dedicate this paper to him.

An earlier version of this paper had incorrectly stated both in the title and abstract that we had data for the 71 largest immigrant groups, whereas the true number is 70 because people whose country of origin is Denmark is not an immigrant group.

All data and other supplementary material is available at the Open Science Framework repository.

References

- [1] Fuerst J, Kirkegaard EOW. The global hereditarian hypothesis and the National Longitudinal Survey of Freshman. Open Differential Psychology. Submitted;.
- [2] Kirkegaard EOW. Criminality and fertility among Danish immigrant populations. Open Differential Psychology. 2014;.
- [3] Kirkegaard EOW. Criminality among Norwegian immigrant populations. Open Differential Psychology. Submitted;.
- [4] Fuerst J. Quick Post: L&V's National IQs predict GMAT scores across 173 nations. Human Varieties. 2014;February.

- [5] Fuerst J. L&V's (2012) National IQs predict 2011-2012 GRE scores for 114 citizenship groups, 2010 + 2012 TOEFL scores for 157 citizenship groups, PISA scores of migrants from 62 nations of origin across 17 destination nations, 19th century (birth cohort 1820) numeracy rates across 54 nations, and early 20th century (birth cohort 1890) numeracy across 129 nations. Human Varieties. 2014;February.
- [6] Lynn R, Vanhanen T. Intelligence: A unifying construct for the social sciences. Ulster Institute for Social Research; 2012.
- [7] Kirkegaard EOW. Predicting Immigrant IQ from their Countries of Origin, and Lynn's National IQs: A Case Study from Denmark. Mankind Quarterly. 2013;.
- [8] Fund IM. Report for Selected Countries and Subjects; 2014.
- [9] Wikipedia. List of countries by GDP (nominal); 2014. Available from: https://en.wikipedia.org/wiki/List_o f_countries_by_GDP_%28nominal%29.
- [10] Research P. The Future of the Global Muslim Population; 2011. Available from: http://feat ures.pewforum.org/muslim-population/.
- [11] Wikipedia. Islam by country; 2014. Available from: https://en.wikipedia.org/wiki/ Islam_by_country.
- [12] Wikipedia. Human height; 2013. Available from: https://en.wikipedia.org/wiki/Huma n_height.
- [13] Wikipedia. MENA Wikipedia, The Free Encyclopedia; 2014. [Online; accessed 30-April-2014]. Available from: http: //en.wikipedia.org/w/index.php?title= MENA&oldid=601880072.
- [14] Statistik D. Indvandrere i Danmark 2013. Danmarks Statistik; 2013.
- [15] Christensen VT, Egelund N, Fredslund EK, Jensen TP. PISA Etnisk 2012. KORA - Det Nationale Institut for Kommuners og Regioners Analyse og Forskning; 2014.
- [16] Jensen AR, Weng LJ. What is a good g? Intelligence. 1994;18(3):231–258.

A Appendix - list of countries of origin by general socioeconomic latent variable in Denmark

Note that the factor is negatively coded, so those with the highest score are those who perform the worst.

Country	Score on the general socioeconomic factor
Lebanon	2.06574
Somalia	2.06059
Turkey	1.94332
Syria	1.84938
Yugoslavia, Republic	1.621 37
Iraq	1.54085
Morocco	1.44991
Yugoslavia	1.43415
Jordan	1.37048
Afghanistan	1.151 56
Tunisia	1.12141
Pakistan	1.08631
Algeria	0.95893
Thailand	0.95542
Sri Lanka	0.95115
Macadonia	0.86555
Vietnam	0.831 37
Bosnia-Hercegovina	0.78319
Uganda	0.581 49
Iran	0.57854
Ethiopia	0.57487
Tanzania	0.41146
Egypt	0.287 31
Croatia	0.26194
Kenva	0.19122
Philippines	0.16204
Indonesia	0.09543
Israel	0.08693
Ghana	0.00465
Chile	-0.02897
Brazil	-0.24962
Soviet Union	-0.31177
Poland	-0.40592
India	-0.51208
Latvia	-0.53251
Portugal	-0.54386
China	-0.5447
Iceland	-0.54589
Romania	-0.61938
Argentina	-0.64445
Greece	-0.71416
Ukraine	-0.72463
Russia	-0.728.04
United Kingdom	-0.751
South Africa	-0.791 53
Spain	-0.81968
Italy	-0.837 56
	Continued on next page

Table 17: List of countries of origin by general socioeconomic latent variable in Denmark

Country	Score on the general socioeconomic factor
Bulgaria	-0.85429
Hungary	-0.8639
Germany	-0.88794
Lithuania	-0.90211
Sweden	-0.90745
Japan	-0.90857
Norway	-0.9214
Finland	-1.02674
Netherlands	-1.07091
Australia	-1.101 36
Austria	-1.10213
Switzerland	-1.12573
Canada	-1.20867
France	-1.21555
Belgium	-1.26163
USA	-1.61244

Table 17 – continued from previous page